Zero-Shot and Few-Shot Learning With Knowledge Graphs: A Comprehensive Survey

计算机科学 经济短缺 分类 样品(材料) 人工智能 任务(项目管理) 机器学习 知识图 标记数据 弹丸 图形 注释 自然语言处理 数据科学 理论计算机科学 语言学 哲学 化学 管理 色谱法 政府(语言学) 经济 有机化学
作者
Jiaoyan Chen,Yuxia Geng,Zhuo Chen,Jeff Z. Pan,Yuan He,Wen Zhang,Ian Horrocks,Huajun Chen
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:111 (6): 653-685 被引量:18
标识
DOI:10.1109/jproc.2023.3279374
摘要

Machine learning (ML), especially deep neural networks, has achieved great success, but many of them often rely on a number of labeled samples for supervision. As sufficient labeled training data are not always ready due to, e.g., continuously emerging prediction targets and costly sample annotation in real-world applications, ML with sample shortage is now being widely investigated. Among all these studies, many prefer to utilize auxiliary information including those in the form of knowledge graph (KG) to reduce the reliance on labeled samples. In this survey, we have comprehensively reviewed over 90 articles about KG-aware research for two major sample shortage settings—zero-shot learning (ZSL) where some classes to be predicted have no labeled samples and few-shot learning (FSL) where some classes to be predicted have only a small number of labeled samples that are available. We first introduce KGs used in ZSL and FSL as well as their construction methods and then systematically categorize and summarize KG-aware ZSL and FSL methods, dividing them into different paradigms, such as the mapping-based, the data augmentation, the propagation-based, and the optimization-based. We next present different applications, including not only KG augmented prediction tasks such as image classification, question answering, text classification, and knowledge extraction but also KG completion tasks and some typical evaluation resources for each task. We eventually discuss some challenges and open problems from different perspectives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助大野采纳,获得30
刚刚
无言完成签到,获得积分10
刚刚
刚刚
1秒前
科研通AI5应助昆医周杰伦采纳,获得10
1秒前
今后应助皓轩采纳,获得10
1秒前
火星上的柚子完成签到,获得积分10
2秒前
4秒前
5秒前
脑洞疼应助yokkio采纳,获得10
5秒前
Chen_Liu发布了新的文献求助10
5秒前
5秒前
完美世界应助jj采纳,获得10
6秒前
huzhy完成签到,获得积分10
6秒前
科研通AI5应助祎休哥采纳,获得10
6秒前
7秒前
Zac完成签到,获得积分10
7秒前
8秒前
LU完成签到,获得积分10
8秒前
顾矜应助沧化采纳,获得10
8秒前
8秒前
疯狂的修杰完成签到,获得积分10
8秒前
葱姜蒜辣椒香菜我全要完成签到,获得积分10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得30
9秒前
Ava应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
李文博完成签到,获得积分20
10秒前
一二一发布了新的文献求助10
10秒前
zyy发布了新的文献求助10
10秒前
11秒前
11秒前
miao完成签到,获得积分10
11秒前
AaronDP发布了新的文献求助100
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554588
求助须知:如何正确求助?哪些是违规求助? 3130412
关于积分的说明 9387005
捐赠科研通 2829789
什么是DOI,文献DOI怎么找? 1555716
邀请新用户注册赠送积分活动 726277
科研通“疑难数据库(出版商)”最低求助积分说明 715527