Interpretation of Machine Learning Models for Data Sets with Many Features Using Feature Importance

特征(语言学) 多重共线性 人工智能 机器学习 口译(哲学) 相似性(几何) 计算机科学 排列(音乐) 数据挖掘 模式识别(心理学) 回归分析 哲学 语言学 物理 声学 图像(数学) 程序设计语言
作者
Hiromasa Kaneko
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (25): 23218-23225 被引量:6
标识
DOI:10.1021/acsomega.3c03722
摘要

Feature importance (FI) is used to interpret the machine learning model y = f(x) constructed between the explanatory variables or features, x, and the objective variables, y. For a large number of features, interpreting the model in the order of increasing FI is inefficient when there are similarly important features. Therefore, in this study, a method is developed to interpret models by considering the similarities between the features in addition to the FI. The cross-validated permutation feature importance (CVPFI), which can be calculated using any machine learning method and can handle multicollinearity problems, is used as the FI, while the absolute correlation and maximal information coefficients are used as metrics of feature similarity. Machine learning models could be effectively interpreted by considering the features from the Pareto fronts, where CVPFI is large and the feature similarity is small. Analyses of actual molecular and material data sets confirm that the proposed method enables the accurate interpretation of machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sssyq完成签到,获得积分20
2秒前
彭于晏应助luoshikun采纳,获得10
3秒前
领导范儿应助啦啦啦采纳,获得10
4秒前
katarinabluu完成签到,获得积分10
5秒前
彭于晏应助leanne采纳,获得10
5秒前
我是老大应助明道若昧采纳,获得10
5秒前
sssyq发布了新的文献求助10
5秒前
着急的觅海完成签到,获得积分10
5秒前
6秒前
ylky发布了新的文献求助10
11秒前
科研通AI2S应助浮浮世世采纳,获得10
11秒前
传奇3应助华中科技大学采纳,获得10
11秒前
情怀应助WN采纳,获得10
12秒前
12秒前
15秒前
朴实山兰完成签到,获得积分10
17秒前
19秒前
SciGPT应助ylky采纳,获得10
19秒前
小爪冰凉发布了新的文献求助10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
JamesPei应助科研小牛采纳,获得150
21秒前
Ava应助科研小牛采纳,获得10
21秒前
21秒前
忧郁盼夏发布了新的文献求助10
24秒前
marina关注了科研通微信公众号
24秒前
沐紫心完成签到 ,获得积分10
25秒前
科研通AI5应助suger采纳,获得10
25秒前
27秒前
八九发布了新的文献求助10
27秒前
30秒前
30秒前
一个好听的名字完成签到,获得积分10
31秒前
wbh发布了新的文献求助20
31秒前
31秒前
32秒前
Eddoes完成签到,获得积分10
32秒前
WN发布了新的文献求助10
33秒前
诚心的凌旋完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173