清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Interpretation of Machine Learning Models for Data Sets with Many Features Using Feature Importance

特征(语言学) 多重共线性 人工智能 机器学习 口译(哲学) 相似性(几何) 计算机科学 排列(音乐) 数据挖掘 模式识别(心理学) 回归分析 哲学 语言学 物理 声学 图像(数学) 程序设计语言
作者
Hiromasa Kaneko
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (25): 23218-23225 被引量:6
标识
DOI:10.1021/acsomega.3c03722
摘要

Feature importance (FI) is used to interpret the machine learning model y = f(x) constructed between the explanatory variables or features, x, and the objective variables, y. For a large number of features, interpreting the model in the order of increasing FI is inefficient when there are similarly important features. Therefore, in this study, a method is developed to interpret models by considering the similarities between the features in addition to the FI. The cross-validated permutation feature importance (CVPFI), which can be calculated using any machine learning method and can handle multicollinearity problems, is used as the FI, while the absolute correlation and maximal information coefficients are used as metrics of feature similarity. Machine learning models could be effectively interpreted by considering the features from the Pareto fronts, where CVPFI is large and the feature similarity is small. Analyses of actual molecular and material data sets confirm that the proposed method enables the accurate interpretation of machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
ceeray23发布了新的文献求助20
5秒前
sh1ro发布了新的文献求助10
10秒前
nojego完成签到,获得积分10
19秒前
脑洞疼应助科研通管家采纳,获得10
34秒前
顾矜应助科研通管家采纳,获得10
34秒前
wjx完成签到 ,获得积分10
35秒前
John完成签到,获得积分10
46秒前
顾矜应助ceeray23采纳,获得20
57秒前
1分钟前
Able完成签到,获得积分10
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
Owen应助董可以采纳,获得10
1分钟前
酷酷妙梦完成签到,获得积分10
1分钟前
科研通AI2S应助彦嘉采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
hhh2018687完成签到,获得积分10
2分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
忘忧Aquarius完成签到,获得积分10
2分钟前
wujiwuhui完成签到 ,获得积分10
2分钟前
Lny发布了新的文献求助30
3分钟前
sh1ro完成签到,获得积分10
3分钟前
luang应助ceeray23采纳,获得40
3分钟前
3分钟前
ww完成签到,获得积分10
4分钟前
斯文败类应助ceeray23采纳,获得20
4分钟前
机智秋莲发布了新的文献求助20
4分钟前
ChatGPT完成签到,获得积分10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
海阔天空完成签到 ,获得积分10
5分钟前
zys发布了新的文献求助10
5分钟前
ffdhdh应助LYZSh采纳,获得10
5分钟前
5分钟前
机智秋莲完成签到,获得积分20
6分钟前
欣欣子完成签到 ,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990543
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256532
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234