Generalized and hetero two-dimensional correlation analysis of hyperspectral imaging combined with three-dimensional convolutional neural network for evaluating lipid oxidation in pork

高光谱成像 模式识别(心理学) 卷积神经网络 人工智能 特征(语言学) 主成分分析 生物系统 计算机科学 近红外光谱 TBARS公司 光谱带 化学 遥感 物理 地质学 光学 脂质过氧化 生物化学 生物 哲学 氧化应激 语言学
作者
Jiehong Cheng,Jun Sun,Kunshan Yao,Chunxia Dai
出处
期刊:Food Control [Elsevier BV]
卷期号:153: 109940-109940 被引量:19
标识
DOI:10.1016/j.foodcont.2023.109940
摘要

Lipid oxidation is the main cause of meat deterioration. Hyperspectral imaging (HSI) technique has attracted attention as a non-destructive testing method. However, the complexity and overlap of the pork hyperspectral data lead to difficult band interpretation and computational overload. In this paper, a lightweight three-dimensional convolutional neural network (3D-CNN) model combined with two-dimensional correlation spectroscopy (2D-COS) analysis was proposed to monitor the lipid oxidation of frozen pork. Through the generalized 2D-COS analysis, the band interpretation of visible near-infrared (vis-NIR) HSI was established and the sequence of event changes caused by pork deterioration was monitored. It was found that sulfmyoglobin and oxymyoglobin were prone to change, and the decomposition of sulfmyoglobin and metmyoglobin occurred before the formation of oxymyoglobin. Moreover, the hetero 2D-COS analysis was used for the first time to correlate vis-NIR with fluorescence spectra to analyze more feature bands of vis-NIR HSI. A lightweight 3D-CNN regression model was developed for hyperspectral images of feature bands to quantitatively predict TBARS. It was found that 10 feature bands were obtained by integrating bands identified by generalized and hetero 2D-COS. The 3D-CNN model of these feature bands has yielded good results in predicting TBARS with R2p of 0.9214 and RMSEP of 0.0364 mg kg−1. Overall, this study provided a method for band assignment and interpretation of vis-NIR HSI and an end-to-end new approach for rapid and non-destructive monitoring of pork oxidative damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王鹏飞发布了新的文献求助10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
慕青应助敢干采纳,获得10
3秒前
浮生若梦完成签到 ,获得积分10
3秒前
5秒前
10秒前
ffffff发布了新的文献求助100
11秒前
MooN完成签到,获得积分10
11秒前
李健应助崔崔采纳,获得10
12秒前
赘婿应助吕不韦采纳,获得10
13秒前
13秒前
车厘子水门汀完成签到 ,获得积分10
14秒前
xr发布了新的文献求助10
14秒前
翁曼雁完成签到 ,获得积分10
18秒前
TRY关闭了TRY文献求助
18秒前
小张在努力完成签到 ,获得积分10
19秒前
搜集达人应助悄悄采纳,获得10
19秒前
研友_VZG7GZ应助xr采纳,获得10
19秒前
20秒前
ss13l完成签到,获得积分10
20秒前
21秒前
21秒前
崔崔发布了新的文献求助10
24秒前
渊思发布了新的文献求助10
25秒前
30秒前
小新同学完成签到,获得积分10
31秒前
昏睡的咖啡完成签到,获得积分10
31秒前
努力打个共完成签到,获得积分10
31秒前
无花果应助王鹏飞采纳,获得10
34秒前
化龙完成签到,获得积分10
34秒前
崔崔完成签到,获得积分10
35秒前
dali完成签到,获得积分10
39秒前
陈一完成签到 ,获得积分10
45秒前
募股小完成签到,获得积分10
49秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966246
求助须知:如何正确求助?哪些是违规求助? 3511683
关于积分的说明 11159207
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343