亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generalized and hetero two-dimensional correlation analysis of hyperspectral imaging combined with three-dimensional convolutional neural network for evaluating lipid oxidation in pork

高光谱成像 模式识别(心理学) 卷积神经网络 人工智能 特征(语言学) 主成分分析 生物系统 计算机科学 近红外光谱 TBARS公司 光谱带 化学 遥感 物理 地质学 光学 脂质过氧化 生物化学 生物 哲学 语言学 氧化应激
作者
Jiehong Cheng,Jun Sun,Kunshan Yao,Chunxia Dai
出处
期刊:Food Control [Elsevier]
卷期号:153: 109940-109940 被引量:19
标识
DOI:10.1016/j.foodcont.2023.109940
摘要

Lipid oxidation is the main cause of meat deterioration. Hyperspectral imaging (HSI) technique has attracted attention as a non-destructive testing method. However, the complexity and overlap of the pork hyperspectral data lead to difficult band interpretation and computational overload. In this paper, a lightweight three-dimensional convolutional neural network (3D-CNN) model combined with two-dimensional correlation spectroscopy (2D-COS) analysis was proposed to monitor the lipid oxidation of frozen pork. Through the generalized 2D-COS analysis, the band interpretation of visible near-infrared (vis-NIR) HSI was established and the sequence of event changes caused by pork deterioration was monitored. It was found that sulfmyoglobin and oxymyoglobin were prone to change, and the decomposition of sulfmyoglobin and metmyoglobin occurred before the formation of oxymyoglobin. Moreover, the hetero 2D-COS analysis was used for the first time to correlate vis-NIR with fluorescence spectra to analyze more feature bands of vis-NIR HSI. A lightweight 3D-CNN regression model was developed for hyperspectral images of feature bands to quantitatively predict TBARS. It was found that 10 feature bands were obtained by integrating bands identified by generalized and hetero 2D-COS. The 3D-CNN model of these feature bands has yielded good results in predicting TBARS with R2p of 0.9214 and RMSEP of 0.0364 mg kg−1. Overall, this study provided a method for band assignment and interpretation of vis-NIR HSI and an end-to-end new approach for rapid and non-destructive monitoring of pork oxidative damage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
1分钟前
1分钟前
何88888888发布了新的文献求助10
1分钟前
1分钟前
1分钟前
orchid完成签到,获得积分10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
2分钟前
Ming完成签到,获得积分10
2分钟前
好运常在完成签到 ,获得积分10
2分钟前
爆米花应助何88888888采纳,获得10
2分钟前
凌洛尘完成签到,获得积分10
2分钟前
2分钟前
何88888888发布了新的文献求助10
2分钟前
SciGPT应助何88888888采纳,获得10
3分钟前
3分钟前
科研通AI2S应助读书的时候采纳,获得10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
小马甲应助读书的时候采纳,获得10
4分钟前
4分钟前
何88888888发布了新的文献求助10
4分钟前
香蕉觅云应助读书的时候采纳,获得10
4分钟前
zxcvvbb1001完成签到 ,获得积分10
4分钟前
XXXXXX发布了新的文献求助10
4分钟前
4分钟前
4分钟前
artos发布了新的文献求助10
4分钟前
hhuajw应助读书的时候采纳,获得10
4分钟前
李健应助artos采纳,获得10
4分钟前
5分钟前
5分钟前
李爱国应助读书的时候采纳,获得80
5分钟前
吃狗粮的猫完成签到 ,获得积分10
5分钟前
田様应助读书的时候采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
hhuajw应助读书的时候采纳,获得10
5分钟前
何88888888发布了新的文献求助10
5分钟前
星辰大海应助读书的时候采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5687976
求助须知:如何正确求助?哪些是违规求助? 5062062
关于积分的说明 15193528
捐赠科研通 4846367
什么是DOI,文献DOI怎么找? 2598843
邀请新用户注册赠送积分活动 1550910
关于科研通互助平台的介绍 1509462