已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generalized and hetero two-dimensional correlation analysis of hyperspectral imaging combined with three-dimensional convolutional neural network for evaluating lipid oxidation in pork

高光谱成像 模式识别(心理学) 卷积神经网络 人工智能 特征(语言学) 主成分分析 生物系统 计算机科学 近红外光谱 TBARS公司 光谱带 化学 遥感 物理 地质学 光学 脂质过氧化 生物化学 生物 哲学 语言学 氧化应激
作者
Jiehong Cheng,Jun Sun,Kunshan Yao,Chunxia Dai
出处
期刊:Food Control [Elsevier]
卷期号:153: 109940-109940 被引量:19
标识
DOI:10.1016/j.foodcont.2023.109940
摘要

Lipid oxidation is the main cause of meat deterioration. Hyperspectral imaging (HSI) technique has attracted attention as a non-destructive testing method. However, the complexity and overlap of the pork hyperspectral data lead to difficult band interpretation and computational overload. In this paper, a lightweight three-dimensional convolutional neural network (3D-CNN) model combined with two-dimensional correlation spectroscopy (2D-COS) analysis was proposed to monitor the lipid oxidation of frozen pork. Through the generalized 2D-COS analysis, the band interpretation of visible near-infrared (vis-NIR) HSI was established and the sequence of event changes caused by pork deterioration was monitored. It was found that sulfmyoglobin and oxymyoglobin were prone to change, and the decomposition of sulfmyoglobin and metmyoglobin occurred before the formation of oxymyoglobin. Moreover, the hetero 2D-COS analysis was used for the first time to correlate vis-NIR with fluorescence spectra to analyze more feature bands of vis-NIR HSI. A lightweight 3D-CNN regression model was developed for hyperspectral images of feature bands to quantitatively predict TBARS. It was found that 10 feature bands were obtained by integrating bands identified by generalized and hetero 2D-COS. The 3D-CNN model of these feature bands has yielded good results in predicting TBARS with R2p of 0.9214 and RMSEP of 0.0364 mg kg−1. Overall, this study provided a method for band assignment and interpretation of vis-NIR HSI and an end-to-end new approach for rapid and non-destructive monitoring of pork oxidative damage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷的麦片完成签到 ,获得积分10
1秒前
Twonej应助VDC采纳,获得30
3秒前
3秒前
Cell完成签到 ,获得积分10
4秒前
5秒前
8秒前
李健应助小明采纳,获得10
8秒前
Youngman完成签到,获得积分10
10秒前
嘿嘿发布了新的文献求助10
12秒前
研友_xnEOX8完成签到,获得积分10
12秒前
隐形曼青应助susuaini采纳,获得10
13秒前
13秒前
Ava应助可爱如你采纳,获得10
14秒前
14秒前
霸气的忆丹完成签到 ,获得积分10
14秒前
zsyhcl应助开心的翅膀采纳,获得10
15秒前
16秒前
科研通AI2S应助研友_xnEOX8采纳,获得50
16秒前
学习要认真喽完成签到 ,获得积分10
18秒前
Ann完成签到 ,获得积分10
18秒前
寒冷毛衣发布了新的文献求助10
19秒前
俊逸的盛男完成签到 ,获得积分10
20秒前
silence发布了新的文献求助10
21秒前
科研通AI6应助寒冷毛衣采纳,获得10
23秒前
24秒前
严明完成签到,获得积分0
25秒前
严明完成签到,获得积分0
25秒前
种地小能手~完成签到 ,获得积分10
27秒前
msn00完成签到 ,获得积分10
28秒前
啊z应助xalone采纳,获得10
28秒前
pojian完成签到,获得积分10
29秒前
susuaini发布了新的文献求助10
29秒前
科目三应助果果采纳,获得10
29秒前
30秒前
培培完成签到 ,获得积分10
30秒前
MchemG举报大头求助涉嫌违规
30秒前
辛勤三问完成签到,获得积分10
31秒前
jinsijia应助科研通管家采纳,获得10
32秒前
CodeCraft应助科研通管家采纳,获得10
32秒前
YifanWang应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681010
求助须知:如何正确求助?哪些是违规求助? 5002920
关于积分的说明 15174421
捐赠科研通 4840696
什么是DOI,文献DOI怎么找? 2594337
邀请新用户注册赠送积分活动 1547472
关于科研通互助平台的介绍 1505366