ChatGPT and Software Testing Education: Promises & Perils

计算机科学 多样性(控制论) 人工智能 自然语言 语言模型 限制 答疑 自然语言理解 软件 变压器 任务(项目管理) 数据科学 软件工程 程序设计语言 工程类 电气工程 电压 机械工程 系统工程
作者
Sajed Jalil,S. Rafi,Thomas D. LaToza,Kevin Moran,Wing Lam
标识
DOI:10.1109/icstw58534.2023.00078
摘要

Over the past decade, predictive language modeling for code has proven to be a valuable tool for enabling new forms of automation for developers. More recently, we have seen the ad-vent of general purpose "large language models", based on neural transformer architectures, that have been trained on massive datasets of human written text, which includes code and natural language. However, despite the demonstrated representational power of such models, interacting with them has historically been constrained to specific task settings, limiting their general applicability. Many of these limitations were recently overcome with the introduction of ChatGPT, a language model created by OpenAI and trained to operate as a conversational agent, enabling it to answer questions and respond to a wide variety of commands from end users.The introduction of models, such as ChatGPT, has already spurred fervent discussion from educators, ranging from fear that students could use these AI tools to circumvent learning, to excitement about the new types of learning opportunities that they might unlock. However, given the nascent nature of these tools, we currently lack fundamental knowledge related to how well they perform in different educational settings, and the potential promise (or danger) that they might pose to traditional forms of instruction. As such, in this paper, we examine how well ChatGPT performs when tasked with answering common questions in a popular software testing curriculum. We found that given its current capabilities, ChatGPT is able to respond to 77.5% of the questions we examined and that, of these questions, it is able to provide correct or partially correct answers in 55.6% of cases, provide correct or partially correct explanations of answers in 53.0% of cases, and that prompting the tool in a shared question context leads to a marginally higher rate of correct answers and explanations. Based on these findings, we discuss the potential promises and perils related to the use of ChatGPT by students and instructors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助hugeng采纳,获得10
1秒前
爆米花应助fed采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
CodeCraft应助无情的宛儿采纳,获得20
4秒前
小蘑菇应助冷酷盼曼采纳,获得10
4秒前
zzy完成签到 ,获得积分10
5秒前
5秒前
小灿完成签到,获得积分10
5秒前
温暖的化蛹完成签到 ,获得积分20
5秒前
共享精神应助尊敬的灰狼采纳,获得10
7秒前
叁月发布了新的文献求助10
8秒前
9秒前
10秒前
12秒前
13秒前
17秒前
汶南完成签到 ,获得积分10
19秒前
华仔应助xx采纳,获得10
19秒前
hugeng发布了新的文献求助10
19秒前
零下负七完成签到,获得积分10
21秒前
22秒前
云漫山完成签到 ,获得积分10
23秒前
26秒前
从前的我完成签到 ,获得积分10
27秒前
高挑的白旋风完成签到,获得积分10
28秒前
Cfan发布了新的文献求助10
29秒前
木木木完成签到 ,获得积分10
31秒前
Bruce完成签到,获得积分10
32秒前
yu发布了新的文献求助10
34秒前
36秒前
李爱国应助小夭采纳,获得10
36秒前
38秒前
永远完成签到,获得积分10
38秒前
39秒前
lzjz完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
39秒前
华仔应助JUYIN采纳,获得30
40秒前
含蓄凡柔发布了新的文献求助10
41秒前
41秒前
shunlu完成签到,获得积分10
42秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980435
求助须知:如何正确求助?哪些是违规求助? 3524350
关于积分的说明 11221150
捐赠科研通 3261779
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879476
科研通“疑难数据库(出版商)”最低求助积分说明 807283