已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ChatGPT and Software Testing Education: Promises & Perils

计算机科学 多样性(控制论) 人工智能 自然语言 语言模型 限制 答疑 自然语言理解 软件 变压器 任务(项目管理) 数据科学 软件工程 程序设计语言 工程类 电气工程 电压 机械工程 系统工程
作者
Sajed Jalil,S. Rafi,Thomas D. LaToza,Kevin Moran,Wing Lam
标识
DOI:10.1109/icstw58534.2023.00078
摘要

Over the past decade, predictive language modeling for code has proven to be a valuable tool for enabling new forms of automation for developers. More recently, we have seen the ad-vent of general purpose "large language models", based on neural transformer architectures, that have been trained on massive datasets of human written text, which includes code and natural language. However, despite the demonstrated representational power of such models, interacting with them has historically been constrained to specific task settings, limiting their general applicability. Many of these limitations were recently overcome with the introduction of ChatGPT, a language model created by OpenAI and trained to operate as a conversational agent, enabling it to answer questions and respond to a wide variety of commands from end users.The introduction of models, such as ChatGPT, has already spurred fervent discussion from educators, ranging from fear that students could use these AI tools to circumvent learning, to excitement about the new types of learning opportunities that they might unlock. However, given the nascent nature of these tools, we currently lack fundamental knowledge related to how well they perform in different educational settings, and the potential promise (or danger) that they might pose to traditional forms of instruction. As such, in this paper, we examine how well ChatGPT performs when tasked with answering common questions in a popular software testing curriculum. We found that given its current capabilities, ChatGPT is able to respond to 77.5% of the questions we examined and that, of these questions, it is able to provide correct or partially correct answers in 55.6% of cases, provide correct or partially correct explanations of answers in 53.0% of cases, and that prompting the tool in a shared question context leads to a marginally higher rate of correct answers and explanations. Based on these findings, we discuss the potential promises and perils related to the use of ChatGPT by students and instructors.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助sansan采纳,获得30
1秒前
阳光的樱应助哦啦啦采纳,获得10
5秒前
FashionBoy应助哦啦啦采纳,获得10
5秒前
呆呆完成签到,获得积分10
5秒前
管靖易完成签到 ,获得积分10
5秒前
8秒前
gywangcn完成签到,获得积分10
8秒前
9秒前
花生完成签到,获得积分10
10秒前
feiCheung完成签到 ,获得积分10
13秒前
完美世界应助哦啦啦采纳,获得10
14秒前
善学以致用应助哦啦啦采纳,获得10
14秒前
乐乐应助哦啦啦采纳,获得10
14秒前
JamesPei应助哦啦啦采纳,获得10
14秒前
orixero应助哦啦啦采纳,获得30
15秒前
万能图书馆应助哦啦啦采纳,获得10
15秒前
15秒前
在水一方应助哦啦啦采纳,获得30
15秒前
宇宇完成签到 ,获得积分0
15秒前
斯文败类应助哦啦啦采纳,获得10
15秒前
搜集达人应助哦啦啦采纳,获得10
15秒前
17秒前
dato12423完成签到,获得积分10
19秒前
Areyouokay完成签到,获得积分10
20秒前
小马甲应助虚幻雁荷采纳,获得10
22秒前
白河夜船发布了新的文献求助10
22秒前
dd完成签到 ,获得积分10
26秒前
白日梦想家完成签到 ,获得积分10
27秒前
28秒前
29秒前
29秒前
李健的小迷弟应助曙光采纳,获得10
31秒前
36秒前
39秒前
搜集达人应助gywangcn采纳,获得10
39秒前
41秒前
大马哈鱼完成签到,获得积分10
42秒前
呆呆发布了新的文献求助10
44秒前
紫焰完成签到 ,获得积分10
46秒前
傲娇的觅翠完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875420
求助须知:如何正确求助?哪些是违规求助? 6516396
关于积分的说明 15676969
捐赠科研通 4993328
什么是DOI,文献DOI怎么找? 2691456
邀请新用户注册赠送积分活动 1633729
关于科研通互助平台的介绍 1591368