亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ChatGPT and Software Testing Education: Promises & Perils

计算机科学 多样性(控制论) 人工智能 自然语言 语言模型 限制 答疑 自然语言理解 软件 变压器 任务(项目管理) 数据科学 软件工程 程序设计语言 工程类 电气工程 电压 机械工程 系统工程
作者
Sajed Jalil,S. Rafi,Thomas D. LaToza,Kevin Moran,Wing Lam
标识
DOI:10.1109/icstw58534.2023.00078
摘要

Over the past decade, predictive language modeling for code has proven to be a valuable tool for enabling new forms of automation for developers. More recently, we have seen the ad-vent of general purpose "large language models", based on neural transformer architectures, that have been trained on massive datasets of human written text, which includes code and natural language. However, despite the demonstrated representational power of such models, interacting with them has historically been constrained to specific task settings, limiting their general applicability. Many of these limitations were recently overcome with the introduction of ChatGPT, a language model created by OpenAI and trained to operate as a conversational agent, enabling it to answer questions and respond to a wide variety of commands from end users.The introduction of models, such as ChatGPT, has already spurred fervent discussion from educators, ranging from fear that students could use these AI tools to circumvent learning, to excitement about the new types of learning opportunities that they might unlock. However, given the nascent nature of these tools, we currently lack fundamental knowledge related to how well they perform in different educational settings, and the potential promise (or danger) that they might pose to traditional forms of instruction. As such, in this paper, we examine how well ChatGPT performs when tasked with answering common questions in a popular software testing curriculum. We found that given its current capabilities, ChatGPT is able to respond to 77.5% of the questions we examined and that, of these questions, it is able to provide correct or partially correct answers in 55.6% of cases, provide correct or partially correct explanations of answers in 53.0% of cases, and that prompting the tool in a shared question context leads to a marginally higher rate of correct answers and explanations. Based on these findings, we discuss the potential promises and perils related to the use of ChatGPT by students and instructors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昌莆完成签到 ,获得积分10
6秒前
1分钟前
1分钟前
呆毛发布了新的文献求助10
1分钟前
赘婿应助甜美的秋尽采纳,获得10
1分钟前
Akim应助pishuang采纳,获得10
1分钟前
zqq完成签到,获得积分0
1分钟前
生动画笔完成签到,获得积分10
1分钟前
1分钟前
pishuang发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
Tamako完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
深情安青应助无误采纳,获得10
1分钟前
1分钟前
发SCI完成签到,获得积分10
1分钟前
Tamako发布了新的文献求助10
1分钟前
2分钟前
无误完成签到,获得积分10
2分钟前
无误发布了新的文献求助10
2分钟前
Tamako关注了科研通微信公众号
2分钟前
111发布了新的文献求助10
2分钟前
xjn完成签到,获得积分10
2分钟前
橘子的海发布了新的文献求助10
2分钟前
在学一会完成签到,获得积分10
2分钟前
qq完成签到 ,获得积分10
2分钟前
852应助33采纳,获得10
2分钟前
浮曳发布了新的文献求助10
3分钟前
Leoon完成签到 ,获得积分10
3分钟前
浮曳完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463262
求助须知:如何正确求助?哪些是违规求助? 4568010
关于积分的说明 14312303
捐赠科研通 4493894
什么是DOI,文献DOI怎么找? 2461964
邀请新用户注册赠送积分活动 1450972
关于科研通互助平台的介绍 1426184