亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ChatGPT and Software Testing Education: Promises & Perils

计算机科学 多样性(控制论) 人工智能 自然语言 语言模型 限制 答疑 自然语言理解 软件 变压器 任务(项目管理) 数据科学 软件工程 程序设计语言 工程类 电气工程 电压 机械工程 系统工程
作者
Sajed Jalil,S. Rafi,Thomas D. LaToza,Kevin Moran,Wing Lam
标识
DOI:10.1109/icstw58534.2023.00078
摘要

Over the past decade, predictive language modeling for code has proven to be a valuable tool for enabling new forms of automation for developers. More recently, we have seen the ad-vent of general purpose "large language models", based on neural transformer architectures, that have been trained on massive datasets of human written text, which includes code and natural language. However, despite the demonstrated representational power of such models, interacting with them has historically been constrained to specific task settings, limiting their general applicability. Many of these limitations were recently overcome with the introduction of ChatGPT, a language model created by OpenAI and trained to operate as a conversational agent, enabling it to answer questions and respond to a wide variety of commands from end users.The introduction of models, such as ChatGPT, has already spurred fervent discussion from educators, ranging from fear that students could use these AI tools to circumvent learning, to excitement about the new types of learning opportunities that they might unlock. However, given the nascent nature of these tools, we currently lack fundamental knowledge related to how well they perform in different educational settings, and the potential promise (or danger) that they might pose to traditional forms of instruction. As such, in this paper, we examine how well ChatGPT performs when tasked with answering common questions in a popular software testing curriculum. We found that given its current capabilities, ChatGPT is able to respond to 77.5% of the questions we examined and that, of these questions, it is able to provide correct or partially correct answers in 55.6% of cases, provide correct or partially correct explanations of answers in 53.0% of cases, and that prompting the tool in a shared question context leads to a marginally higher rate of correct answers and explanations. Based on these findings, we discuss the potential promises and perils related to the use of ChatGPT by students and instructors.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
nikg发布了新的文献求助10
23秒前
诗梦完成签到,获得积分10
35秒前
YifanWang应助科研通管家采纳,获得30
46秒前
青葱鱼块完成签到 ,获得积分10
1分钟前
1分钟前
以七完成签到 ,获得积分10
1分钟前
sdkabdrxt完成签到,获得积分10
1分钟前
1分钟前
krajicek发布了新的文献求助10
2分钟前
2分钟前
闪闪沂完成签到 ,获得积分10
2分钟前
科研通AI6.2应助刻苦不弱采纳,获得10
3分钟前
3分钟前
小神仙完成签到 ,获得积分10
3分钟前
3分钟前
Isaac完成签到 ,获得积分10
3分钟前
刻苦不弱发布了新的文献求助10
3分钟前
4分钟前
毛耳朵发布了新的文献求助10
4分钟前
yzy完成签到 ,获得积分10
4分钟前
互助应助毛耳朵采纳,获得10
4分钟前
乐乐应助毛耳朵采纳,获得10
4分钟前
NattyPoe发布了新的文献求助10
4分钟前
忧心的士萧完成签到,获得积分10
4分钟前
今后应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
夏天无完成签到 ,获得积分10
4分钟前
Cloud发布了新的文献求助10
5分钟前
5分钟前
gkhsdvkb发布了新的文献求助10
5分钟前
yin景景完成签到,获得积分10
5分钟前
科研通AI6.2应助开霁采纳,获得10
5分钟前
李健的小迷弟应助颖颖采纳,获得10
6分钟前
6分钟前
颖颖发布了新的文献求助10
6分钟前
颖颖完成签到,获得积分10
6分钟前
酷波er应助科研通管家采纳,获得10
6分钟前
单薄咖啡豆完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870851
求助须知:如何正确求助?哪些是违规求助? 6468547
关于积分的说明 15665078
捐赠科研通 4987083
什么是DOI,文献DOI怎么找? 2689159
邀请新用户注册赠送积分活动 1631508
关于科研通互助平台的介绍 1589536