Effect of NO2 exposure on airway inflammation and oxidative stress in asthmatic mice

卵清蛋白 哮喘 免疫学 氧化应激 炎症 医学 敏化 免疫球蛋白E 气道阻力 免疫系统 内科学 抗体
作者
Chan Lu,Faming Wang,Yanling Liu,Miaomiao Deng,Xu Yang,Ping Ma
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:457: 131787-131787 被引量:16
标识
DOI:10.1016/j.jhazmat.2023.131787
摘要

Nitrogen dioxide (NO2) is a widespread air pollutant. Epidemiological evidence indicates that NO2 is associated with an increase of incidence rate and mortality of asthma, but its mechanism is still unclear. In this study, we exposed mice to NO2 (5 ppm, 4 h per day for 30 days) intermittently to investigate the development and potential toxicological mechanisms of allergic asthma. We randomly assigned 60 male Balb/c mice to four groups: saline control, ovalbumin (OVA) sensitization, NO2 alone, and OVA+NO2 groups. The involved mechanisms were found from the perspective of airway inflammation and oxidative stress. The results showed that NO2 exposure could aggravate lung inflammation in asthmatic mice, and airway remodeling was characterized by significant thickening of the airway wall and infiltration of inflammatory cells. Moreover, NO2 would aggravate the airway hyperresponsiveness (AHR), which is characterized by significantly elevated inspiratory resistance (Ri) and expiratory resistance (Re), as well as decreased dynamic lung compliance (Cldyn). In addition, NO2 exposure promoted pro-inflammatory cytokines (IL-6 and TNF-α) and serum immunoglobulin (IgE) production. The imbalance of Th1/Th2 cell differentiation (IL-4 increased, IFN-γ reduced, IL-4/IFN-γ significantly increased) played a key role in the inflammatory response of asthma under NO2 exposure. In a nutshell, NO2 exposure could promote allergic airway inflammation and increase asthma susceptibility. The levels of ROS and MDA among asthmatic mice exposed to NO2 increased significantly, while GSH levels sharply decreased. These findings may provide better toxicological evidence for the mechanisms of allergic asthma risk due to NO2 exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
1秒前
顾矜应助fbbggb采纳,获得10
2秒前
微风完成签到,获得积分10
3秒前
5秒前
7秒前
桐桐应助福娃采纳,获得10
9秒前
JamesPei应助欢喜的荔枝采纳,获得10
9秒前
王十二完成签到,获得积分10
9秒前
10秒前
豆子发布了新的文献求助10
10秒前
11秒前
ding应助skmksd采纳,获得10
12秒前
天宇发布了新的文献求助10
14秒前
卡卡完成签到 ,获得积分10
14秒前
完蛋发布了新的文献求助10
14秒前
拉布拉多浣熊完成签到,获得积分10
15秒前
生动的青烟完成签到,获得积分10
16秒前
大力完成签到,获得积分10
18秒前
fbbggb发布了新的文献求助10
18秒前
21秒前
邓德亨卓汲完成签到,获得积分10
22秒前
23秒前
23秒前
24秒前
沐沐发布了新的文献求助10
28秒前
SXYYXS发布了新的文献求助10
28秒前
白苹果完成签到 ,获得积分10
28秒前
科目三应助夏夏采纳,获得10
29秒前
酷波er应助123采纳,获得30
29秒前
天宇完成签到,获得积分10
29秒前
30秒前
王77应助科研通管家采纳,获得50
33秒前
JamesPei应助科研通管家采纳,获得30
33秒前
赘婿应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
33秒前
美好斓应助科研通管家采纳,获得30
33秒前
隐形曼青应助天宇采纳,获得10
34秒前
科研張应助感性的开山采纳,获得20
34秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323