Transparent conductive SnO2 thin films via resonant Ta doping

材料科学 透明导电膜 带隙 光电子学 薄膜 兴奋剂 掺杂剂 氧化铟锡 光导率 纳米技术 凝聚态物理 物理
作者
Vedaste Uwihoreye,Zhenni Yang,Jiaye Zhang,Yu‐Mei Lin,Xuan Liang,Yang Lu,Kelvin H. L. Zhang
出处
期刊:Science China. Materials [Springer Nature]
卷期号:66 (1): 264-271 被引量:15
标识
DOI:10.1007/s40843-022-2122-9
摘要

Transparent conductive oxide (TCO) thin films are highly desired as electrodes for modern flat-panel displays and solar cells. Alternative indium-free TCO materials are highly needed, because of the scarcity and the high price of indium. Based on the mechanism of resonant doping, Ta has been identified as an effective dopant for SnO2 to achieve highly conductive and transparent TCO. In this work, we fabricated a series of Ta-doped SnO2 thin films (Sn1−xTaxO2, x = 0.001, 0.01, 0.02, 0.03) with high conductivity and high optical transparency via a low-cost sol-gel spin coating method. The Sn0.98Ta0.02O2 film achieves the highest electrical conductivity of 855 S cm−1 with a carrier concentration of 2.3 × 1020 cm−3 and high mobility of 23 cm2 V−1 s−1. The films exhibit a very high optical transparency of 89.5% in the visible light region. High-resolution X-ray photoemission spectroscopy and optical spectroscopy were combined to gain insights into the electronic structure of the Sn1−xTaxO2 films. The optical bandgaps of the films are increased from 3.96 eV for the undoped SnO2 to 4.24 eV for the Sn0.98Ta0.02O2 film due to the occupation of the bottom of conduction band by free electrons, i.e., the Burstein-Moss effect. Interestingly, a bandgap shrinkage is also directly observed due to the bandgap renormalization arising from many-body interactions. The double guarantee of transparency and conductivity in Sn1−xTaxO2 films and the low-cost growth method provide a new platform for optoelectronic and solar cell applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助大炮轰地球采纳,获得10
刚刚
兴奋莞发布了新的文献求助10
1秒前
2秒前
2秒前
wanci应助典雅猕猴桃采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
傲娇皮皮虾完成签到 ,获得积分10
3秒前
科目三应助阿苇采纳,获得10
4秒前
深情安青应助王蕊采纳,获得10
5秒前
5秒前
6秒前
愉快寄凡发布了新的文献求助10
6秒前
6秒前
7秒前
Lucas应助原野小年采纳,获得10
7秒前
crystal发布了新的文献求助10
7秒前
mmol完成签到,获得积分10
7秒前
Xian发布了新的文献求助10
7秒前
wanci应助冰冰采纳,获得10
7秒前
kai发布了新的文献求助10
8秒前
8秒前
暖若安阳发布了新的文献求助10
8秒前
毛毛完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
年鱼精发布了新的文献求助10
9秒前
9秒前
花花完成签到,获得积分10
9秒前
清爽觅双完成签到,获得积分10
9秒前
9秒前
Daniel911完成签到,获得积分10
9秒前
FashionBoy应助韩麒嘉采纳,获得10
9秒前
叮当喵发布了新的文献求助10
10秒前
10秒前
合适鲂完成签到,获得积分10
11秒前
顺心紫翠发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608584
求助须知:如何正确求助?哪些是违规求助? 4693308
关于积分的说明 14877618
捐赠科研通 4718061
什么是DOI,文献DOI怎么找? 2544332
邀请新用户注册赠送积分活动 1509463
关于科研通互助平台的介绍 1472844