Transparent conductive SnO2 thin films via resonant Ta doping

材料科学 透明导电膜 带隙 光电子学 薄膜 兴奋剂 掺杂剂 氧化铟锡 光导率 纳米技术 凝聚态物理 物理
作者
Vedaste Uwihoreye,Zhenni Yang,Jiaye Zhang,Yu‐Mei Lin,Xuan Liang,Yang Lu,Kelvin H. L. Zhang
出处
期刊:Science China. Materials [Springer Nature]
卷期号:66 (1): 264-271 被引量:15
标识
DOI:10.1007/s40843-022-2122-9
摘要

Transparent conductive oxide (TCO) thin films are highly desired as electrodes for modern flat-panel displays and solar cells. Alternative indium-free TCO materials are highly needed, because of the scarcity and the high price of indium. Based on the mechanism of resonant doping, Ta has been identified as an effective dopant for SnO2 to achieve highly conductive and transparent TCO. In this work, we fabricated a series of Ta-doped SnO2 thin films (Sn1−xTaxO2, x = 0.001, 0.01, 0.02, 0.03) with high conductivity and high optical transparency via a low-cost sol-gel spin coating method. The Sn0.98Ta0.02O2 film achieves the highest electrical conductivity of 855 S cm−1 with a carrier concentration of 2.3 × 1020 cm−3 and high mobility of 23 cm2 V−1 s−1. The films exhibit a very high optical transparency of 89.5% in the visible light region. High-resolution X-ray photoemission spectroscopy and optical spectroscopy were combined to gain insights into the electronic structure of the Sn1−xTaxO2 films. The optical bandgaps of the films are increased from 3.96 eV for the undoped SnO2 to 4.24 eV for the Sn0.98Ta0.02O2 film due to the occupation of the bottom of conduction band by free electrons, i.e., the Burstein-Moss effect. Interestingly, a bandgap shrinkage is also directly observed due to the bandgap renormalization arising from many-body interactions. The double guarantee of transparency and conductivity in Sn1−xTaxO2 films and the low-cost growth method provide a new platform for optoelectronic and solar cell applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whk发布了新的文献求助10
1秒前
胡庆余堂小洋参完成签到,获得积分10
1秒前
CodeCraft应助默默紊采纳,获得10
1秒前
烟花应助不易采纳,获得10
1秒前
st发布了新的文献求助10
1秒前
斯文败类应助Liu920302采纳,获得10
2秒前
霸气映之完成签到,获得积分10
2秒前
陈隐隐约约完成签到,获得积分10
2秒前
2秒前
guoduan完成签到,获得积分10
3秒前
3秒前
222发布了新的文献求助10
3秒前
李特冷发布了新的文献求助10
3秒前
黄绪林发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
灯箱发布了新的文献求助10
5秒前
6秒前
科目三应助研雾采纳,获得10
6秒前
疯子完成签到,获得积分10
6秒前
6秒前
6秒前
上弦月发布了新的文献求助10
7秒前
Hilda007发布了新的文献求助10
8秒前
8秒前
烟花应助英俊乌龟采纳,获得10
8秒前
孤独静枫发布了新的文献求助10
8秒前
Young应助晞嘻采纳,获得10
9秒前
Sylvia发布了新的文献求助10
9秒前
9秒前
时安完成签到,获得积分10
10秒前
10秒前
沧沧发布了新的文献求助10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614862
求助须知:如何正确求助?哪些是违规求助? 4699807
关于积分的说明 14905197
捐赠科研通 4740557
什么是DOI,文献DOI怎么找? 2547802
邀请新用户注册赠送积分活动 1511593
关于科研通互助平台的介绍 1473715