Transparent conductive SnO2 thin films via resonant Ta doping

材料科学 透明导电膜 带隙 光电子学 薄膜 兴奋剂 掺杂剂 氧化铟锡 光导率 纳米技术 凝聚态物理 物理
作者
Vedaste Uwihoreye,Zhenni Yang,Jiaye Zhang,Yu‐Mei Lin,Xuan Liang,Yang Lu,Kelvin H. L. Zhang
出处
期刊:Science China. Materials [Springer Nature]
卷期号:66 (1): 264-271 被引量:15
标识
DOI:10.1007/s40843-022-2122-9
摘要

Transparent conductive oxide (TCO) thin films are highly desired as electrodes for modern flat-panel displays and solar cells. Alternative indium-free TCO materials are highly needed, because of the scarcity and the high price of indium. Based on the mechanism of resonant doping, Ta has been identified as an effective dopant for SnO2 to achieve highly conductive and transparent TCO. In this work, we fabricated a series of Ta-doped SnO2 thin films (Sn1−xTaxO2, x = 0.001, 0.01, 0.02, 0.03) with high conductivity and high optical transparency via a low-cost sol-gel spin coating method. The Sn0.98Ta0.02O2 film achieves the highest electrical conductivity of 855 S cm−1 with a carrier concentration of 2.3 × 1020 cm−3 and high mobility of 23 cm2 V−1 s−1. The films exhibit a very high optical transparency of 89.5% in the visible light region. High-resolution X-ray photoemission spectroscopy and optical spectroscopy were combined to gain insights into the electronic structure of the Sn1−xTaxO2 films. The optical bandgaps of the films are increased from 3.96 eV for the undoped SnO2 to 4.24 eV for the Sn0.98Ta0.02O2 film due to the occupation of the bottom of conduction band by free electrons, i.e., the Burstein-Moss effect. Interestingly, a bandgap shrinkage is also directly observed due to the bandgap renormalization arising from many-body interactions. The double guarantee of transparency and conductivity in Sn1−xTaxO2 films and the low-cost growth method provide a new platform for optoelectronic and solar cell applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蛋黄酥酥发布了新的文献求助10
刚刚
刚刚
WangYZ发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
夏侯以旋完成签到,获得积分10
1秒前
1秒前
结实青文完成签到,获得积分10
1秒前
想毕业的马涛完成签到,获得积分10
1秒前
赵佳楠完成签到,获得积分10
2秒前
lm完成签到,获得积分10
2秒前
风吹麦田应助诸天真采纳,获得80
2秒前
3秒前
cheng完成签到,获得积分10
3秒前
哈比完成签到,获得积分10
3秒前
香蕉诗蕊应助ivying0209采纳,获得10
3秒前
蓝天发布了新的文献求助10
3秒前
FW完成签到,获得积分10
3秒前
4秒前
ee发布了新的文献求助10
4秒前
苻黎昕完成签到,获得积分10
4秒前
科研菜狗发布了新的文献求助10
4秒前
章半仙发布了新的文献求助10
5秒前
共享精神应助追风少年采纳,获得10
5秒前
龚保宇完成签到,获得积分10
5秒前
5秒前
哈比发布了新的文献求助10
5秒前
柚子发布了新的文献求助10
6秒前
王木木完成签到,获得积分10
6秒前
6秒前
6秒前
xixi发布了新的文献求助10
6秒前
6秒前
我是老大应助图图采纳,获得10
7秒前
7秒前
7秒前
yaofengle完成签到,获得积分10
7秒前
poppy完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646155
求助须知:如何正确求助?哪些是违规求助? 4770208
关于积分的说明 15033403
捐赠科研通 4804753
什么是DOI,文献DOI怎么找? 2569195
邀请新用户注册赠送积分活动 1526252
关于科研通互助平台的介绍 1485762