Transparent conductive SnO2 thin films via resonant Ta doping

材料科学 透明导电膜 带隙 光电子学 薄膜 兴奋剂 掺杂剂 氧化铟锡 光导率 纳米技术 凝聚态物理 物理
作者
Vedaste Uwihoreye,Zhenni Yang,Jiaye Zhang,Yu‐Mei Lin,Xuan Liang,Yang Lu,Kelvin H. L. Zhang
出处
期刊:Science China. Materials [Springer Nature]
卷期号:66 (1): 264-271 被引量:15
标识
DOI:10.1007/s40843-022-2122-9
摘要

Transparent conductive oxide (TCO) thin films are highly desired as electrodes for modern flat-panel displays and solar cells. Alternative indium-free TCO materials are highly needed, because of the scarcity and the high price of indium. Based on the mechanism of resonant doping, Ta has been identified as an effective dopant for SnO2 to achieve highly conductive and transparent TCO. In this work, we fabricated a series of Ta-doped SnO2 thin films (Sn1−xTaxO2, x = 0.001, 0.01, 0.02, 0.03) with high conductivity and high optical transparency via a low-cost sol-gel spin coating method. The Sn0.98Ta0.02O2 film achieves the highest electrical conductivity of 855 S cm−1 with a carrier concentration of 2.3 × 1020 cm−3 and high mobility of 23 cm2 V−1 s−1. The films exhibit a very high optical transparency of 89.5% in the visible light region. High-resolution X-ray photoemission spectroscopy and optical spectroscopy were combined to gain insights into the electronic structure of the Sn1−xTaxO2 films. The optical bandgaps of the films are increased from 3.96 eV for the undoped SnO2 to 4.24 eV for the Sn0.98Ta0.02O2 film due to the occupation of the bottom of conduction band by free electrons, i.e., the Burstein-Moss effect. Interestingly, a bandgap shrinkage is also directly observed due to the bandgap renormalization arising from many-body interactions. The double guarantee of transparency and conductivity in Sn1−xTaxO2 films and the low-cost growth method provide a new platform for optoelectronic and solar cell applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助HHZ采纳,获得10
刚刚
1秒前
Nora完成签到 ,获得积分10
1秒前
ding应助明亮的幻竹采纳,获得10
1秒前
2秒前
3秒前
富贵发布了新的文献求助10
3秒前
4秒前
whisper80完成签到,获得积分10
4秒前
香蕉觅云应助HHZ采纳,获得10
5秒前
充电宝应助miki采纳,获得10
5秒前
lizhiqian2024发布了新的文献求助10
5秒前
1234完成签到,获得积分10
6秒前
沙拉酱发布了新的文献求助10
6秒前
一口袋的风完成签到,获得积分10
6秒前
zoulanfunny04发布了新的文献求助20
7秒前
7秒前
淡然惜萱完成签到,获得积分10
7秒前
浮浮发布了新的文献求助10
8秒前
猪猪侠应助HHZ采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
搜集达人应助Jolly采纳,获得10
10秒前
10秒前
11秒前
李健应助小白采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
深情安青应助幸福遥采纳,获得10
13秒前
深情安青应助eisenchen采纳,获得10
14秒前
qin发布了新的文献求助10
14秒前
14秒前
落后的纸鹤完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
慕青应助前程似锦采纳,获得10
15秒前
whs完成签到 ,获得积分10
15秒前
16秒前
16秒前
Derik完成签到,获得积分10
17秒前
远方发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666314
求助须知:如何正确求助?哪些是违规求助? 4881135
关于积分的说明 15117070
捐赠科研通 4825396
什么是DOI,文献DOI怎么找? 2583303
邀请新用户注册赠送积分活动 1537470
关于科研通互助平台的介绍 1495666