Combination of structural and functional connectivity explains unique variation in specific domains of cognitive function

认知 主成分分析 结构方程建模 计算机科学 回归 人类连接体项目 回归分析 功能(生物学) 样品(材料) 函数主成分分析 人工智能 心理学 认知心理学 机器学习 功能连接 神经科学 生物 进化生物学 化学 色谱法 精神分析
作者
Marta Czime Litwińczuk,Nelson J. Trujillo‐Barreto,Nils Muhlert,Lauren Cloutman,Anna M. Woollams
出处
期刊:NeuroImage [Elsevier BV]
卷期号:262: 119531-119531 被引量:12
标识
DOI:10.1016/j.neuroimage.2022.119531
摘要

The relationship between structural and functional brain networks has been characterised as complex: the two networks mirror each other and show mutual influence but they also diverge in their organisation. This work explored whether a combination of structural and functional connectivity can improve the fit of regression models of cognitive performance. Principal Component Analysis (PCA) was first applied to cognitive data from the Human Connectome Project to identify latent cognitive components: Executive Function, Self-regulation, Language, Encoding and Sequence Processing. A Principal Component Regression approach with embedded Step-Wise Regression (SWR-PCR) was then used to fit regression models of each cognitive domain based on structural (SC), functional (FC) or combined structural-functional (CC) connectivity. Executive Function was best explained by the CC model. Self-regulation was equally well explained by SC and FC. Language was equally well explained by CC and FC models. Encoding and Sequence Processing were best explained by SC. Evaluation of out-of-sample models' skill via cross-validation showed that SC, FC and CC produced generalisable models of Language performance. SC models performed most effectively at predicting Language performance in unseen sample. Executive Function was most effectively predicted by SC models, followed only by CC models. Self-regulation was only effectively predicted by CC models and Sequence Processing was only effectively predicted by FC models. The present study demonstrates that integrating structural and functional connectivity can help explaining cognitive performance, but that the added explanatory value (in-sample) may be domain-specific and can come at the expense of reduced generalisation performance (out-of-sample).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助10
2秒前
sunsjones发布了新的文献求助10
2秒前
好困发布了新的文献求助10
2秒前
3秒前
壮观的夏山完成签到,获得积分10
3秒前
pretty完成签到 ,获得积分10
4秒前
4秒前
5秒前
dypdyp应助迟到虞姬采纳,获得10
5秒前
6秒前
7秒前
02Zhu完成签到,获得积分10
7秒前
尼萌尼萌发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
周博完成签到,获得积分10
11秒前
12秒前
nevermeant发布了新的文献求助10
12秒前
善学以致用应助spike采纳,获得10
12秒前
不锈钢小乌龟完成签到,获得积分10
13秒前
02Zhu发布了新的文献求助10
13秒前
14秒前
周博发布了新的文献求助10
14秒前
15秒前
善善完成签到,获得积分20
15秒前
大模型应助拼搏靖巧采纳,获得10
15秒前
奋进中的科研小菜鸟完成签到,获得积分10
15秒前
16秒前
17秒前
若雨凌风发布了新的文献求助10
17秒前
18秒前
20秒前
20秒前
勤劳的鸡发布了新的文献求助10
22秒前
wu8577应助122采纳,获得10
24秒前
北海西贝完成签到,获得积分10
24秒前
所所应助石榴汁的书采纳,获得10
24秒前
吴彦祖完成签到,获得积分10
25秒前
nevermeant完成签到,获得积分20
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371