Combination of structural and functional connectivity explains unique variation in specific domains of cognitive function

认知 主成分分析 结构方程建模 计算机科学 回归 人类连接体项目 回归分析 功能(生物学) 样品(材料) 函数主成分分析 人工智能 心理学 认知心理学 机器学习 功能连接 神经科学 生物 进化生物学 化学 色谱法 精神分析
作者
Marta Czime Litwińczuk,Nelson J. Trujillo‐Barreto,Nils Muhlert,Lauren Cloutman,Anna M. Woollams
出处
期刊:NeuroImage [Elsevier]
卷期号:262: 119531-119531 被引量:12
标识
DOI:10.1016/j.neuroimage.2022.119531
摘要

The relationship between structural and functional brain networks has been characterised as complex: the two networks mirror each other and show mutual influence but they also diverge in their organisation. This work explored whether a combination of structural and functional connectivity can improve the fit of regression models of cognitive performance. Principal Component Analysis (PCA) was first applied to cognitive data from the Human Connectome Project to identify latent cognitive components: Executive Function, Self-regulation, Language, Encoding and Sequence Processing. A Principal Component Regression approach with embedded Step-Wise Regression (SWR-PCR) was then used to fit regression models of each cognitive domain based on structural (SC), functional (FC) or combined structural-functional (CC) connectivity. Executive Function was best explained by the CC model. Self-regulation was equally well explained by SC and FC. Language was equally well explained by CC and FC models. Encoding and Sequence Processing were best explained by SC. Evaluation of out-of-sample models' skill via cross-validation showed that SC, FC and CC produced generalisable models of Language performance. SC models performed most effectively at predicting Language performance in unseen sample. Executive Function was most effectively predicted by SC models, followed only by CC models. Self-regulation was only effectively predicted by CC models and Sequence Processing was only effectively predicted by FC models. The present study demonstrates that integrating structural and functional connectivity can help explaining cognitive performance, but that the added explanatory value (in-sample) may be domain-specific and can come at the expense of reduced generalisation performance (out-of-sample).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助鲤鱼羊采纳,获得10
1秒前
Hw完成签到,获得积分10
2秒前
华东偏振王完成签到,获得积分10
2秒前
LIUXU完成签到,获得积分10
5秒前
Dream发布了新的文献求助10
5秒前
xixi完成签到,获得积分10
5秒前
6秒前
6秒前
寻悦发布了新的文献求助10
6秒前
王颖发布了新的文献求助10
6秒前
魚航園完成签到,获得积分10
7秒前
大模型应助有几颗荔枝采纳,获得10
8秒前
无语的白易完成签到,获得积分10
8秒前
66666发布了新的文献求助10
11秒前
12秒前
David完成签到,获得积分10
12秒前
14秒前
14秒前
14秒前
科研通AI6应助CHEN采纳,获得10
15秒前
青青青青完成签到,获得积分10
15秒前
15秒前
15秒前
闪闪乞完成签到,获得积分10
16秒前
一品真意发布了新的文献求助10
16秒前
16秒前
16秒前
李健应助阿冲采纳,获得30
16秒前
焦儿发布了新的文献求助10
16秒前
科研通AI6应助66666采纳,获得10
17秒前
17秒前
17秒前
18秒前
bkagyin应助青青青青采纳,获得10
19秒前
20秒前
小y发布了新的文献求助10
20秒前
潇洒发布了新的文献求助10
20秒前
杨大强完成签到,获得积分10
21秒前
21秒前
tutu发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643591
求助须知:如何正确求助?哪些是违规求助? 4761418
关于积分的说明 15021120
捐赠科研通 4801844
什么是DOI,文献DOI怎么找? 2567087
邀请新用户注册赠送积分活动 1524843
关于科研通互助平台的介绍 1484403