Extended Features Based Random Vector Functional Link Network for Classification Problem

支持向量机 计算机科学 链接(几何体) 人工智能 载体(分子生物学) 随机森林 模式识别(心理学) 计算机网络 生物 生物化学 基因 重组DNA
作者
A. K. Malik,M. A. Ganaie,M. Tanveer,Ponnuthurai Nagaratnam Suganthan
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 4744-4753 被引量:9
标识
DOI:10.1109/tcss.2022.3187461
摘要

Random vector functional link (RVFL) network has been successfully employed in diverse domains such as computer vision and machine learning, due to its universal approximation capability. Recently, the shallow RVFL architecture has been extended to deep architectures. In deep architectures, multiple hidden layers are stacked for extracting informative features from the original feature space. Therefore, having rich features, deep models are very successful compared to shallow models. In this article, we propose an extended feature RVFL (efRVFL) model that is trained over extended feature space generated analytically from the original feature space. The proposed efRVFL model has three types of features, i.e., original features, supervised randomized (newly generated) features, and unsupervised randomized features, in its feature matrix. The proposed efRVFL model with additional features has capability to capture nonlinear hidden relationships within the dataset. The proposed efRVFL model is an unstable classifier, and thus, its performance can be improved further via ensemble learning. Ensemble models are stable and accurate and have better generalization performance than single models. Therefore, we also propose an ensemble of extended feature RVFL (en-efRVFL) model. Each base model of en-efRVFL is trained over different feature spaces so that more accurate and diverse base models can be generated. The outcome of the base models is integrated via average voting scheme. Empirical evaluation over $46$ UCI classification datasets demonstrates that the proposed efRVFL and en-efRVFL models have better performance than RVFL and other given deep models. Furthermore, the experimental results over $12$ sparse datasets show that the proposed en-efRVFL model has a winning performance among several deep feedforward neural networks (FNNs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xunr完成签到,获得积分10
1秒前
qiang发布了新的文献求助10
1秒前
2秒前
LZY完成签到,获得积分20
2秒前
来日可追发布了新的文献求助30
3秒前
3秒前
3秒前
4秒前
wang发布了新的文献求助10
5秒前
丘比特应助LZY采纳,获得10
6秒前
nendia发布了新的文献求助20
6秒前
6秒前
积极便当发布了新的文献求助10
7秒前
7秒前
look完成签到,获得积分10
7秒前
活力静曼发布了新的文献求助10
7秒前
狗贼发布了新的文献求助10
8秒前
8秒前
心无杂念发布了新的文献求助10
9秒前
英姑应助高贵的曲奇采纳,获得10
9秒前
9秒前
完美世界应助解泽星采纳,获得10
10秒前
10秒前
Jarvin关注了科研通微信公众号
10秒前
NN发布了新的文献求助10
10秒前
10秒前
12秒前
12秒前
orixero应助流年采纳,获得10
12秒前
Inanopig发布了新的文献求助10
13秒前
科研通AI5应助高兴孤云采纳,获得10
13秒前
Galaxy发布了新的文献求助10
13秒前
元昭诩应助atmorz采纳,获得10
13秒前
zzzyq0063完成签到,获得积分20
13秒前
Surly完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
nanling发布了新的文献求助10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652722
求助须知:如何正确求助?哪些是违规求助? 3216855
关于积分的说明 9714154
捐赠科研通 2924569
什么是DOI,文献DOI怎么找? 1601790
邀请新用户注册赠送积分活动 754553
科研通“疑难数据库(出版商)”最低求助积分说明 733156