Towards Accurate DGA Detection based on Siamese Network with Insufficient Training Samples

人工智能 计算机科学 僵尸网络 机器学习 特征提取 深度学习 领域(数学分析) 提取器 人工神经网络 特征(语言学) 服务器 模式识别(心理学) 工程类 互联网 语言学 数学分析 万维网 哲学 数学 工艺工程
作者
Xiaoyan Hu,Miao Li,Guang Cheng,Ruidong Li,Hua Wu,Jian Gong
标识
DOI:10.1109/icc45855.2022.9838409
摘要

Domain Generation Algorithms (DGAs) are widely applied in diversified malicious attack patterns such as botnets. Attacks utilize DGAs to dynamically create pseudorandom domains to evade security detection and successfully connect bots with Command and Controls (C&C) servers. The detection of Algorithmically Generated Domains (AGDs) plays an essential role in network attack detection. Most of the existing DGA detectors are machine learning or deep learning-based methods. However, these DGA detectors perform relatively poorly with insufficient training samples, such as small-scale DGA families and emerging DGA variants. Besides, machine learning-based detectors require sophisticated and time-consuming artificial feature extraction, and attackers can circumvent the extracted features. This paper focuses on accurately detecting DGAs based on siamese network with insufficient training samples. Our proposed DGA detection method is referred to as DGAD-SN. DGAD-SN first introduces contrastive learning and adopts the siamese network framework to construct the feature extractor, which excavates the implicit relationship information between characters in the domain name strings using limited training samples. Then machine learning-based DGA classifiers are trained based on the extracted neural feature vectors of domain names to identify AGDs. Our experimental studies suggest that DGAD-SN can efficiently extract distinguishable neural feature vectors for domain names and outperforms state-of-the-art DGA detectors in identifying small-scale DGA families or emerging DGA variants. Its average accuracy is 10%−15% higher than conventional machine learning-based detection methods and about 1%−2% higher than deep learning-based detection methods using limited training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
zhang值完成签到,获得积分10
6秒前
li完成签到,获得积分10
7秒前
djf完成签到,获得积分10
9秒前
9秒前
杳鸢应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
jyy应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
善学以致用应助赵十一采纳,获得10
14秒前
YOLO完成签到,获得积分10
21秒前
22秒前
小鱼儿完成签到,获得积分10
25秒前
25秒前
MorningStar完成签到 ,获得积分10
27秒前
chengzi完成签到,获得积分10
27秒前
27秒前
27秒前
Sophia完成签到,获得积分10
28秒前
Hayeronis发布了新的文献求助10
29秒前
这个郭我背了完成签到,获得积分10
29秒前
helppppp发布了新的文献求助10
30秒前
Dailei完成签到,获得积分10
34秒前
烟花应助helppppp采纳,获得10
37秒前
酷波er应助trn采纳,获得10
38秒前
超越针针完成签到 ,获得积分10
39秒前
儒雅八宝粥完成签到 ,获得积分10
40秒前
unchanged完成签到,获得积分10
42秒前
可爱的函函应助夏雨采纳,获得10
42秒前
上官若男应助莫若舞采纳,获得10
42秒前
43秒前
隐形曼青应助谢紫微采纳,获得30
45秒前
噢噢噢噢完成签到,获得积分20
48秒前
49秒前
吃瓜少女应助Hayeronis采纳,获得10
49秒前
51秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266352
求助须知:如何正确求助?哪些是违规求助? 2906179
关于积分的说明 8336823
捐赠科研通 2576595
什么是DOI,文献DOI怎么找? 1400623
科研通“疑难数据库(出版商)”最低求助积分说明 654794
邀请新用户注册赠送积分活动 633661