Towards Accurate DGA Detection based on Siamese Network with Insufficient Training Samples

人工智能 计算机科学 僵尸网络 机器学习 特征提取 深度学习 领域(数学分析) 提取器 人工神经网络 特征(语言学) 服务器 模式识别(心理学) 工程类 互联网 语言学 数学分析 万维网 哲学 数学 工艺工程
作者
Xiaoyan Hu,Miao Li,Guang Cheng,Ruidong Li,Hua Wu,Jian Gong
标识
DOI:10.1109/icc45855.2022.9838409
摘要

Domain Generation Algorithms (DGAs) are widely applied in diversified malicious attack patterns such as botnets. Attacks utilize DGAs to dynamically create pseudorandom domains to evade security detection and successfully connect bots with Command and Controls (C&C) servers. The detection of Algorithmically Generated Domains (AGDs) plays an essential role in network attack detection. Most of the existing DGA detectors are machine learning or deep learning-based methods. However, these DGA detectors perform relatively poorly with insufficient training samples, such as small-scale DGA families and emerging DGA variants. Besides, machine learning-based detectors require sophisticated and time-consuming artificial feature extraction, and attackers can circumvent the extracted features. This paper focuses on accurately detecting DGAs based on siamese network with insufficient training samples. Our proposed DGA detection method is referred to as DGAD-SN. DGAD-SN first introduces contrastive learning and adopts the siamese network framework to construct the feature extractor, which excavates the implicit relationship information between characters in the domain name strings using limited training samples. Then machine learning-based DGA classifiers are trained based on the extracted neural feature vectors of domain names to identify AGDs. Our experimental studies suggest that DGAD-SN can efficiently extract distinguishable neural feature vectors for domain names and outperforms state-of-the-art DGA detectors in identifying small-scale DGA families or emerging DGA variants. Its average accuracy is 10%−15% higher than conventional machine learning-based detection methods and about 1%−2% higher than deep learning-based detection methods using limited training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
包容凌翠发布了新的文献求助10
1秒前
1秒前
科研通AI6应助张杰采纳,获得10
1秒前
1秒前
Yukirin发布了新的文献求助10
1秒前
阿蓉啊完成签到 ,获得积分10
2秒前
2秒前
斜玉完成签到,获得积分10
2秒前
甜蜜听云完成签到 ,获得积分10
2秒前
2秒前
chen完成签到,获得积分10
3秒前
菠小萝完成签到,获得积分10
3秒前
liputao完成签到,获得积分10
3秒前
3秒前
mochaff完成签到,获得积分10
4秒前
赘婿应助GOODYUE采纳,获得10
4秒前
111发布了新的文献求助10
4秒前
lzh发布了新的文献求助10
5秒前
易烊干洗发布了新的文献求助20
5秒前
向野发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
哈哈哈发布了新的文献求助10
7秒前
8秒前
8秒前
浅浅完成签到,获得积分10
8秒前
8秒前
懒羊羊发布了新的文献求助10
9秒前
9秒前
云阿柔完成签到,获得积分10
9秒前
9秒前
能干冰露发布了新的文献求助10
10秒前
kaik031419发布了新的文献求助10
10秒前
浮游应助易烊干洗采纳,获得10
10秒前
dh完成签到,获得积分0
10秒前
叶子发布了新的文献求助10
11秒前
HCLO发布了新的文献求助10
11秒前
浅浅发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320015
求助须知:如何正确求助?哪些是违规求助? 4461987
关于积分的说明 13885224
捐赠科研通 4352699
什么是DOI,文献DOI怎么找? 2390804
邀请新用户注册赠送积分活动 1384435
关于科研通互助平台的介绍 1354258