Towards Accurate DGA Detection based on Siamese Network with Insufficient Training Samples

人工智能 计算机科学 僵尸网络 机器学习 特征提取 深度学习 领域(数学分析) 提取器 人工神经网络 特征(语言学) 服务器 模式识别(心理学) 工程类 互联网 数学分析 语言学 哲学 数学 工艺工程 万维网
作者
Xiaoyan Hu,Miao Li,Guang Cheng,Ruidong Li,Hua Wu,Jian Gong
标识
DOI:10.1109/icc45855.2022.9838409
摘要

Domain Generation Algorithms (DGAs) are widely applied in diversified malicious attack patterns such as botnets. Attacks utilize DGAs to dynamically create pseudorandom domains to evade security detection and successfully connect bots with Command and Controls (C&C) servers. The detection of Algorithmically Generated Domains (AGDs) plays an essential role in network attack detection. Most of the existing DGA detectors are machine learning or deep learning-based methods. However, these DGA detectors perform relatively poorly with insufficient training samples, such as small-scale DGA families and emerging DGA variants. Besides, machine learning-based detectors require sophisticated and time-consuming artificial feature extraction, and attackers can circumvent the extracted features. This paper focuses on accurately detecting DGAs based on siamese network with insufficient training samples. Our proposed DGA detection method is referred to as DGAD-SN. DGAD-SN first introduces contrastive learning and adopts the siamese network framework to construct the feature extractor, which excavates the implicit relationship information between characters in the domain name strings using limited training samples. Then machine learning-based DGA classifiers are trained based on the extracted neural feature vectors of domain names to identify AGDs. Our experimental studies suggest that DGAD-SN can efficiently extract distinguishable neural feature vectors for domain names and outperforms state-of-the-art DGA detectors in identifying small-scale DGA families or emerging DGA variants. Its average accuracy is 10%−15% higher than conventional machine learning-based detection methods and about 1%−2% higher than deep learning-based detection methods using limited training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助Carry采纳,获得10
1秒前
刘果果完成签到,获得积分10
1秒前
2秒前
2秒前
moon689发布了新的文献求助10
2秒前
七月完成签到,获得积分10
2秒前
ZOEzoe发布了新的文献求助30
3秒前
4秒前
摆烂研究牲完成签到,获得积分10
4秒前
脑洞疼应助酷酷白凡采纳,获得10
5秒前
既白完成签到 ,获得积分10
5秒前
Elliot_315发布了新的文献求助10
5秒前
Luckqi6688完成签到,获得积分10
6秒前
小广完成签到,获得积分10
7秒前
秋迎夏完成签到,获得积分0
7秒前
ocdspkss完成签到,获得积分10
8秒前
月月完成签到,获得积分10
8秒前
儒雅致远发布了新的文献求助10
8秒前
淡然冬灵发布了新的文献求助10
9秒前
9秒前
wy完成签到,获得积分20
10秒前
马马马发布了新的文献求助10
10秒前
10秒前
gc发布了新的文献求助10
11秒前
ding应助娜娜呀采纳,获得20
11秒前
12秒前
娃娃菜妮完成签到 ,获得积分10
12秒前
13秒前
14秒前
孙福禄应助过时的砖头采纳,获得10
14秒前
爱吃巧乐兹的猹完成签到 ,获得积分10
14秒前
14秒前
15秒前
CHEN__02_完成签到 ,获得积分10
15秒前
vv发布了新的文献求助10
17秒前
遇见完成签到,获得积分10
17秒前
17秒前
18秒前
彼方完成签到,获得积分10
18秒前
木心应助深情的访彤采纳,获得20
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600