HybridGNN: Learning Hybrid Representation for Recommendation in Multiplex Heterogeneous Networks

计算机科学 利用 杠杆(统计) 理论计算机科学 推荐系统 语义学(计算机科学) 代表(政治) 骨料(复合) 节点(物理) GSM演进的增强数据速率 图形 人工智能 分布式计算 数据挖掘 机器学习 复合材料 材料科学 计算机安全 结构工程 政治 政治学 法学 程序设计语言 工程类
作者
Tiankai Gu,Chaokun Wang,Cheng Wu,Yunkai Lou,Jingcao Xu,Changping Wang,Kai Xu,Can Ye,Yang Song
标识
DOI:10.1109/icde53745.2022.00106
摘要

Recently, graph neural networks have shown the superiority of modeling the complex topological structures in heterogeneous network-based recommender systems. Due to the diverse interactions among nodes and abundant semantics emerging from diverse types of nodes and edges, there is a bursting research interest in learning expressive node repre-sentations in multiplex heterogeneous networks. One of the most important tasks in recommender systems is to predict the potential connection between two nodes under a specific edge type (i.e., relationship). Although existing studies utilize explicit metapaths to aggregate neighbors, practically they only consider intra-relationship metapaths and thus fail to leverage the potential uplift by inter-relationship information. Moreover, it is not always straightforward to exploit inter-relationship metapaths comprehensively under diverse relationships, espe-cially with the increasing number of node and edge types. In addition, contributions of different relationships between two nodes are difficult to measure. To address the challenges, we propose HybridGNN, an end-to-end GNN model with hybrid aggregation flows and hierarchical attentions to fully utilize the heterogeneity in the multiplex scenarios. Specifically, HybridGNN applies a randomized inter-relationship exploration module to exploit the multiplexity property among different relationships. Then, our model leverages hybrid aggregation flows under intra-relationship metapaths and randomized exploration to learn the rich semantics. To explore the importance of different aggregation flow and take advantage of the multiplexity property, we bring forward a novel hierarchical attention module which leverages both metapath-Ievel attention and relationship-level attention. Extensive experimental results on five real-world datasets suggest that HybridGNN achieves the best performance compared to several state-of-the-art baselines (p < 0.01, t-test) with statistical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依古比古发布了新的文献求助10
刚刚
李莉莉完成签到,获得积分10
2秒前
小奇发布了新的文献求助10
3秒前
5秒前
Xwx61010发布了新的文献求助10
6秒前
凭亿近人完成签到,获得积分20
6秒前
小研究牲完成签到,获得积分20
7秒前
共享精神应助lshl2000采纳,获得10
8秒前
小研究牲发布了新的文献求助10
10秒前
乔垣结衣应助美丽又富有采纳,获得10
10秒前
田様应助大溺采纳,获得10
11秒前
11秒前
小奇关注了科研通微信公众号
12秒前
13秒前
pluto应助pu采纳,获得10
13秒前
汉堡包应助pu采纳,获得10
13秒前
orixero应助pu采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
一一应助科研通管家采纳,获得10
14秒前
14秒前
雨夜星空应助科研通管家采纳,获得10
14秒前
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
14秒前
SYLH应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
科研通AI5应助肘击采纳,获得10
17秒前
勤奋尔丝完成签到 ,获得积分10
18秒前
JamesPei应助小研究牲采纳,获得10
19秒前
Zyan发布了新的文献求助10
20秒前
jenningseastera应助ddemm采纳,获得10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775590
求助须知:如何正确求助?哪些是违规求助? 3321201
关于积分的说明 10203985
捐赠科研通 3036025
什么是DOI,文献DOI怎么找? 1665925
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766