已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Invertible Rescaling Network and Its Extensions

可逆矩阵 内射函数 图像复原 转化(遗传学) 修补 计算机科学 双射 算法 反问题 图像(数学) 交错 数学 人工智能 图像处理 离散数学 操作系统 基因 数学分析 生物化学 化学 纯数学
作者
Xiao Ming-qing,Shuxin Zheng,Chang Liu,Zhouchen Lin,Tie‐Yan Liu
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:131 (1): 134-159 被引量:13
标识
DOI:10.1007/s11263-022-01688-4
摘要

Image rescaling is a commonly used bidirectional operation, which first downscales high-resolution images to fit various display screens or to be storage- and bandwidth-friendly, and afterward upscales the corresponding low-resolution images to recover the original resolution or the details in the zoom-in images. However, the non-injective downscaling mapping discards high-frequency contents, leading to the ill-posed problem for the inverse restoration task. This can be abstracted as a general image degradation–restoration problem with information loss. In this work, we propose a novel invertible framework to handle this general problem, which models the bidirectional degradation and restoration from a new perspective, i.e. invertible bijective transformation. The invertibility enables the framework to model the information loss of pre-degradation in the form of distribution, which could mitigate the ill-posed problem during post-restoration. To be specific, we develop invertible models to generate valid degraded images and meanwhile transform the distribution of lost contents to the fixed distribution of a latent variable during the forward degradation. Then restoration is made tractable by applying the inverse transformation on the generated degraded image together with a randomly-drawn latent variable. We start from image rescaling and instantiate the model as Invertible Rescaling Network, which can be easily extended to the similar decolorization–colorization task. We further propose to combine the invertible framework with existing degradation methods such as image compression for wider applications. Experimental results demonstrate the significant improvement of our model over existing methods in terms of both quantitative and qualitative evaluations of upscaling and colorizing reconstruction from downscaled and decolorized images, and rate-distortion of image compression. Code is available at https://github.com/pkuxmq/Invertible-Image-Rescaling .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Becky完成签到,获得积分10
1秒前
anqi6688发布了新的文献求助10
2秒前
小昊完成签到 ,获得积分10
2秒前
挚智完成签到 ,获得积分10
2秒前
5秒前
王哪跑儿完成签到,获得积分10
7秒前
黄琳完成签到 ,获得积分10
7秒前
小凯完成签到 ,获得积分0
8秒前
8秒前
阿泽完成签到,获得积分10
10秒前
扣子完成签到,获得积分10
10秒前
vippp完成签到 ,获得积分10
12秒前
无极微光应助张鱼小丸子采纳,获得20
12秒前
嘻嘻完成签到 ,获得积分10
12秒前
大佬完成签到,获得积分10
14秒前
雨中小王应助anqi6688采纳,获得10
16秒前
卷毛维安完成签到,获得积分10
17秒前
18秒前
YangHuilin完成签到,获得积分10
21秒前
李健的小迷弟应助sensen采纳,获得10
22秒前
24秒前
NexusExplorer应助rrrrrrry采纳,获得10
25秒前
HarrisonChan完成签到,获得积分10
25秒前
26秒前
张晨完成签到 ,获得积分10
27秒前
27秒前
NexusExplorer应助Heng采纳,获得10
28秒前
Norcae完成签到 ,获得积分10
28秒前
30秒前
Summer完成签到 ,获得积分10
31秒前
ZX完成签到,获得积分10
31秒前
陈谦嵩发布了新的文献求助10
32秒前
33秒前
大方的曼容完成签到 ,获得积分10
33秒前
xuanjiawu完成签到 ,获得积分10
34秒前
庄建煌完成签到,获得积分10
34秒前
sensen发布了新的文献求助10
36秒前
无极微光应助rrrrrrry采纳,获得20
37秒前
klio完成签到 ,获得积分10
38秒前
38秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584515
求助须知:如何正确求助?哪些是违规求助? 4668234
关于积分的说明 14770941
捐赠科研通 4610742
什么是DOI,文献DOI怎么找? 2529928
邀请新用户注册赠送积分活动 1498921
关于科研通互助平台的介绍 1467411