Invertible Rescaling Network and Its Extensions

可逆矩阵 内射函数 图像复原 转化(遗传学) 修补 计算机科学 双射 算法 反问题 图像(数学) 交错 数学 人工智能 图像处理 离散数学 操作系统 基因 数学分析 生物化学 化学 纯数学
作者
Xiao Ming-qing,Shuxin Zheng,Chang Liu,Zhouchen Lin,Tie‐Yan Liu
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:131 (1): 134-159 被引量:13
标识
DOI:10.1007/s11263-022-01688-4
摘要

Image rescaling is a commonly used bidirectional operation, which first downscales high-resolution images to fit various display screens or to be storage- and bandwidth-friendly, and afterward upscales the corresponding low-resolution images to recover the original resolution or the details in the zoom-in images. However, the non-injective downscaling mapping discards high-frequency contents, leading to the ill-posed problem for the inverse restoration task. This can be abstracted as a general image degradation–restoration problem with information loss. In this work, we propose a novel invertible framework to handle this general problem, which models the bidirectional degradation and restoration from a new perspective, i.e. invertible bijective transformation. The invertibility enables the framework to model the information loss of pre-degradation in the form of distribution, which could mitigate the ill-posed problem during post-restoration. To be specific, we develop invertible models to generate valid degraded images and meanwhile transform the distribution of lost contents to the fixed distribution of a latent variable during the forward degradation. Then restoration is made tractable by applying the inverse transformation on the generated degraded image together with a randomly-drawn latent variable. We start from image rescaling and instantiate the model as Invertible Rescaling Network, which can be easily extended to the similar decolorization–colorization task. We further propose to combine the invertible framework with existing degradation methods such as image compression for wider applications. Experimental results demonstrate the significant improvement of our model over existing methods in terms of both quantitative and qualitative evaluations of upscaling and colorizing reconstruction from downscaled and decolorized images, and rate-distortion of image compression. Code is available at https://github.com/pkuxmq/Invertible-Image-Rescaling .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YELLOW发布了新的文献求助10
刚刚
刚刚
liweiDr发布了新的文献求助10
1秒前
ShowMaker应助我爱学习采纳,获得10
1秒前
蟹蟹发布了新的文献求助10
1秒前
Eid发布了新的文献求助20
2秒前
2秒前
lumin完成签到,获得积分0
4秒前
5秒前
覃仲荣发布了新的文献求助10
5秒前
6秒前
哞哞完成签到,获得积分10
7秒前
7秒前
cym666666发布了新的文献求助10
8秒前
鲲之小完成签到 ,获得积分10
9秒前
上官若男应助怦然心动采纳,获得10
9秒前
司空元正完成签到 ,获得积分10
11秒前
13秒前
开心初雪完成签到 ,获得积分20
13秒前
15秒前
15秒前
岁晚发布了新的文献求助10
16秒前
moonn完成签到,获得积分20
18秒前
19秒前
geyuanhong完成签到,获得积分10
19秒前
20秒前
酷酷的哲发布了新的文献求助20
20秒前
xr发布了新的文献求助10
21秒前
花花呀完成签到,获得积分10
21秒前
22秒前
22秒前
24秒前
moonn发布了新的文献求助10
24秒前
夏风完成签到,获得积分10
25秒前
研友_8Qxp7Z发布了新的文献求助10
26秒前
富贵发布了新的文献求助10
27秒前
蟹蟹完成签到,获得积分20
28秒前
luqian发布了新的文献求助10
29秒前
辛勤的沉鱼完成签到,获得积分10
29秒前
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790129
关于积分的说明 7793840
捐赠科研通 2446527
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109