亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Invertible Rescaling Network and Its Extensions

可逆矩阵 内射函数 图像复原 转化(遗传学) 修补 计算机科学 双射 算法 反问题 图像(数学) 交错 数学 人工智能 图像处理 离散数学 操作系统 基因 数学分析 生物化学 化学 纯数学
作者
Xiao Ming-qing,Shuxin Zheng,Chang Liu,Zhouchen Lin,Tie‐Yan Liu
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:131 (1): 134-159 被引量:13
标识
DOI:10.1007/s11263-022-01688-4
摘要

Image rescaling is a commonly used bidirectional operation, which first downscales high-resolution images to fit various display screens or to be storage- and bandwidth-friendly, and afterward upscales the corresponding low-resolution images to recover the original resolution or the details in the zoom-in images. However, the non-injective downscaling mapping discards high-frequency contents, leading to the ill-posed problem for the inverse restoration task. This can be abstracted as a general image degradation–restoration problem with information loss. In this work, we propose a novel invertible framework to handle this general problem, which models the bidirectional degradation and restoration from a new perspective, i.e. invertible bijective transformation. The invertibility enables the framework to model the information loss of pre-degradation in the form of distribution, which could mitigate the ill-posed problem during post-restoration. To be specific, we develop invertible models to generate valid degraded images and meanwhile transform the distribution of lost contents to the fixed distribution of a latent variable during the forward degradation. Then restoration is made tractable by applying the inverse transformation on the generated degraded image together with a randomly-drawn latent variable. We start from image rescaling and instantiate the model as Invertible Rescaling Network, which can be easily extended to the similar decolorization–colorization task. We further propose to combine the invertible framework with existing degradation methods such as image compression for wider applications. Experimental results demonstrate the significant improvement of our model over existing methods in terms of both quantitative and qualitative evaluations of upscaling and colorizing reconstruction from downscaled and decolorized images, and rate-distortion of image compression. Code is available at https://github.com/pkuxmq/Invertible-Image-Rescaling .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
CipherSage应助企鹅采纳,获得10
6秒前
沉静丹寒发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
体贴花卷发布了新的文献求助10
15秒前
大大鱼发布了新的文献求助10
17秒前
JamesPei应助世良采纳,获得10
18秒前
23秒前
Hou完成签到,获得积分20
24秒前
MchemG完成签到,获得积分0
27秒前
32秒前
Hou发布了新的文献求助10
37秒前
CodeCraft应助光亮的天真采纳,获得10
51秒前
笑点低的斑马完成签到,获得积分10
57秒前
NexusExplorer应助fsz采纳,获得10
1分钟前
JamesPei应助笑点低的斑马采纳,获得20
1分钟前
1分钟前
xiaoxie完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Panther完成签到,获得积分10
1分钟前
1分钟前
fsz完成签到,获得积分10
1分钟前
1分钟前
fsz发布了新的文献求助10
1分钟前
光亮的天真完成签到,获得积分10
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
1分钟前
世良发布了新的文献求助10
1分钟前
1分钟前
123发布了新的文献求助10
1分钟前
1分钟前
1分钟前
龙06完成签到,获得积分10
1分钟前
科研通AI2S应助123采纳,获得10
1分钟前
沉静丹寒发布了新的文献求助10
1分钟前
雨寒完成签到 ,获得积分10
1分钟前
共享精神应助体贴花卷采纳,获得10
1分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650780
求助须知:如何正确求助?哪些是违规求助? 4781689
关于积分的说明 15052597
捐赠科研通 4809594
什么是DOI,文献DOI怎么找? 2572392
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487373