重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Invertible Rescaling Network and Its Extensions

可逆矩阵 内射函数 图像复原 转化(遗传学) 修补 计算机科学 双射 算法 反问题 图像(数学) 交错 数学 人工智能 图像处理 离散数学 操作系统 基因 数学分析 生物化学 化学 纯数学
作者
Xiao Ming-qing,Shuxin Zheng,Chang Liu,Zhouchen Lin,Tie‐Yan Liu
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:131 (1): 134-159 被引量:13
标识
DOI:10.1007/s11263-022-01688-4
摘要

Image rescaling is a commonly used bidirectional operation, which first downscales high-resolution images to fit various display screens or to be storage- and bandwidth-friendly, and afterward upscales the corresponding low-resolution images to recover the original resolution or the details in the zoom-in images. However, the non-injective downscaling mapping discards high-frequency contents, leading to the ill-posed problem for the inverse restoration task. This can be abstracted as a general image degradation–restoration problem with information loss. In this work, we propose a novel invertible framework to handle this general problem, which models the bidirectional degradation and restoration from a new perspective, i.e. invertible bijective transformation. The invertibility enables the framework to model the information loss of pre-degradation in the form of distribution, which could mitigate the ill-posed problem during post-restoration. To be specific, we develop invertible models to generate valid degraded images and meanwhile transform the distribution of lost contents to the fixed distribution of a latent variable during the forward degradation. Then restoration is made tractable by applying the inverse transformation on the generated degraded image together with a randomly-drawn latent variable. We start from image rescaling and instantiate the model as Invertible Rescaling Network, which can be easily extended to the similar decolorization–colorization task. We further propose to combine the invertible framework with existing degradation methods such as image compression for wider applications. Experimental results demonstrate the significant improvement of our model over existing methods in terms of both quantitative and qualitative evaluations of upscaling and colorizing reconstruction from downscaled and decolorized images, and rate-distortion of image compression. Code is available at https://github.com/pkuxmq/Invertible-Image-Rescaling .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
零三零发布了新的文献求助10
1秒前
1秒前
123noo发布了新的文献求助10
1秒前
天天快乐应助喜悦悟空采纳,获得10
1秒前
2秒前
2秒前
壳聚糖发布了新的文献求助10
2秒前
fly关闭了fly文献求助
2秒前
3秒前
3秒前
3秒前
年轻半雪发布了新的文献求助10
3秒前
共享精神应助ning采纳,获得10
4秒前
现实的酸奶给现实的酸奶的求助进行了留言
4秒前
4秒前
端庄一刀发布了新的文献求助10
5秒前
liumx发布了新的文献求助10
5秒前
5秒前
Lucas应助rose采纳,获得10
5秒前
李爱国应助羽柒er采纳,获得10
6秒前
6秒前
欢喜海完成签到,获得积分10
6秒前
852应助友好的鱼鱼采纳,获得30
6秒前
高凡完成签到,获得积分10
6秒前
6秒前
我是老大应助FFF采纳,获得10
6秒前
7秒前
一一发布了新的文献求助10
7秒前
yujia发布了新的文献求助10
7秒前
现代的无春完成签到 ,获得积分10
8秒前
zhu发布了新的文献求助30
8秒前
ggxiang1989完成签到,获得积分10
8秒前
赵紫怡完成签到 ,获得积分10
8秒前
要减肥发布了新的文献求助10
8秒前
年少轻狂最情深完成签到 ,获得积分10
8秒前
氢离子完成签到 ,获得积分10
9秒前
9秒前
9秒前
gt完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654