Invertible Rescaling Network and Its Extensions

可逆矩阵 内射函数 图像复原 转化(遗传学) 修补 计算机科学 双射 算法 反问题 图像(数学) 交错 数学 人工智能 图像处理 离散数学 操作系统 基因 数学分析 生物化学 化学 纯数学
作者
Xiao Ming-qing,Shuxin Zheng,Chang Liu,Zhouchen Lin,Tie‐Yan Liu
出处
期刊:International Journal of Computer Vision [Springer Science+Business Media]
卷期号:131 (1): 134-159 被引量:13
标识
DOI:10.1007/s11263-022-01688-4
摘要

Image rescaling is a commonly used bidirectional operation, which first downscales high-resolution images to fit various display screens or to be storage- and bandwidth-friendly, and afterward upscales the corresponding low-resolution images to recover the original resolution or the details in the zoom-in images. However, the non-injective downscaling mapping discards high-frequency contents, leading to the ill-posed problem for the inverse restoration task. This can be abstracted as a general image degradation–restoration problem with information loss. In this work, we propose a novel invertible framework to handle this general problem, which models the bidirectional degradation and restoration from a new perspective, i.e. invertible bijective transformation. The invertibility enables the framework to model the information loss of pre-degradation in the form of distribution, which could mitigate the ill-posed problem during post-restoration. To be specific, we develop invertible models to generate valid degraded images and meanwhile transform the distribution of lost contents to the fixed distribution of a latent variable during the forward degradation. Then restoration is made tractable by applying the inverse transformation on the generated degraded image together with a randomly-drawn latent variable. We start from image rescaling and instantiate the model as Invertible Rescaling Network, which can be easily extended to the similar decolorization–colorization task. We further propose to combine the invertible framework with existing degradation methods such as image compression for wider applications. Experimental results demonstrate the significant improvement of our model over existing methods in terms of both quantitative and qualitative evaluations of upscaling and colorizing reconstruction from downscaled and decolorized images, and rate-distortion of image compression. Code is available at https://github.com/pkuxmq/Invertible-Image-Rescaling .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助李有钱采纳,获得10
1秒前
秋寒发布了新的文献求助30
2秒前
酷波er应助等待凡灵采纳,获得10
2秒前
缪尔岚完成签到,获得积分10
3秒前
eso完成签到,获得积分10
3秒前
多情煎蛋完成签到,获得积分10
3秒前
miao应助罗芝采纳,获得20
3秒前
3秒前
66发发布了新的文献求助10
3秒前
3秒前
Talben发布了新的文献求助10
5秒前
麻雀完成签到,获得积分10
6秒前
冷静橘子完成签到,获得积分10
7秒前
小乐应助菲菲呀采纳,获得10
8秒前
完美世界应助泽锦臻采纳,获得10
8秒前
wanwan应助菲菲呀采纳,获得10
8秒前
ghhu发布了新的文献求助10
8秒前
8秒前
8秒前
辣小扬发布了新的文献求助10
9秒前
10秒前
12秒前
踏实三问完成签到,获得积分10
12秒前
mzf发布了新的文献求助10
13秒前
13秒前
13秒前
1111发布了新的文献求助10
13秒前
15秒前
15秒前
15秒前
15秒前
怡然念之完成签到,获得积分10
15秒前
ArenasZ发布了新的文献求助10
15秒前
xiaxia42完成签到 ,获得积分10
15秒前
香蕉觅云应助杨旭东采纳,获得10
16秒前
Caesar发布了新的文献求助10
17秒前
慕青应助Ziyi_Xu采纳,获得30
18秒前
Talben完成签到,获得积分20
18秒前
123456完成签到,获得积分10
19秒前
泽锦臻发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992193
求助须知:如何正确求助?哪些是违规求助? 3533192
关于积分的说明 11261459
捐赠科研通 3272613
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809442