Short-term Power Load Forecasting Based on Orthogonal PCA-LPP Dimension Reduction and IGWO-BiLSTM

降维 计算机科学 主成分分析 电力系统 维数之咒 还原(数学) 维数(图论) 期限(时间) 算法 人工智能 数据挖掘 功率(物理) 数学优化 数学 量子力学 几何学 物理 纯数学
作者
Yahui Wang,Lingzhi Yi,Jiang Zhu,Jiangyong Liu,Shitong Wang,Bo Liu
出处
期刊:Recent Patents on Mechanical Engineering [Bentham Science Publishers]
卷期号:16 (1): 72-86 被引量:3
标识
DOI:10.2174/2212797615666221012091902
摘要

Background: Accurate power load forecasting is of great significance in ensuring power load planning, reliability and economic operation. The traditional power load is easy to be affected by climate, environment, date type and other factors, resulting in the problem of poor forecasting accuracy. Therefore, it is necessary to study power load forecasting. Objective: Through machine learning, dimension reduction method and intelligent optimization algorithm, the accuracy of load forecasting is improved Methods: In order to fully extract load information and improve the accuracy of short-term load forecasting for campus electricity, an improved combination of orthogonal dimensionality reduction and Bilstm is proposed to optimize the hyperparameters in BiLSTM using an improved gray wolf algorithm. Firstly, using the advantages of principal component analysis (PCA) and Locality Preserving Projection (LPP) to maintain the global and local structure of the data, respectively, the Orthogonal PCA-LPP(OPCA-LPP) dimensionality reduction method is proposed to reduce the dimensionality of the original multidimensional data. Finally, the dimensionality-reduced data is used as the input of BiLSTM and optimized by the improved Gray Wolf algorithm, which can enhance the prediction capability of the model and thus achieve accurate prediction of short-term electric load. Results: The Mae and RMSE of this paper are 1.6585 and 1.7602 respectively. The results show that the method proposed in this paper is reasonable Conclusion: This method is applied to power load forecasting. The comparative experimental results show that this method reduces the dimension of data input, simplifies the complexity of network input data, and improves the accuracy of load forecasting. Compared with other methods, it can effectively improve the accuracy of load forecasting, and provide a basis for formulating reasonable power grid operation mode and balanced dispatching of power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shulei完成签到,获得积分20
1秒前
FCZ发布了新的文献求助10
1秒前
1秒前
星辰完成签到,获得积分10
1秒前
王文胜发布了新的文献求助10
1秒前
山水之乐完成签到,获得积分10
1秒前
33完成签到,获得积分10
2秒前
2秒前
CAOHOU应助hp571采纳,获得10
3秒前
深情安青应助着急的彭采纳,获得10
3秒前
LL完成签到 ,获得积分10
3秒前
江姜完成签到 ,获得积分10
3秒前
威武忆山完成签到 ,获得积分10
3秒前
Eternitymaria完成签到,获得积分10
3秒前
张二狗完成签到,获得积分10
3秒前
斯文败类应助冬瓜采纳,获得10
3秒前
lxj5983发布了新的文献求助10
4秒前
ZZZ完成签到,获得积分10
4秒前
山水之乐发布了新的文献求助10
4秒前
萝卜啃菠萝完成签到,获得积分20
4秒前
断秋1完成签到 ,获得积分10
5秒前
rio完成签到,获得积分10
5秒前
羊蛋儿发布了新的文献求助10
5秒前
ypp发布了新的文献求助10
5秒前
圣迭戈完成签到,获得积分10
5秒前
杀死比尔完成签到,获得积分20
6秒前
坦率夕阳完成签到,获得积分10
6秒前
6秒前
眼睛大的傲菡完成签到,获得积分10
6秒前
xfq发布了新的文献求助10
8秒前
星辰大海应助刻苦丝袜采纳,获得10
8秒前
羊羊完成签到 ,获得积分10
8秒前
HHH完成签到,获得积分10
8秒前
杀死比尔发布了新的文献求助10
8秒前
烟花应助外向尔竹采纳,获得10
9秒前
9秒前
9秒前
fionaFDU完成签到,获得积分10
10秒前
小雪完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009429
求助须知:如何正确求助?哪些是违规求助? 3549323
关于积分的说明 11301690
捐赠科研通 3283833
什么是DOI,文献DOI怎么找? 1810413
邀请新用户注册赠送积分活动 886275
科研通“疑难数据库(出版商)”最低求助积分说明 811301