Short-term Power Load Forecasting Based on Orthogonal PCA-LPP Dimension Reduction and IGWO-BiLSTM

降维 计算机科学 主成分分析 电力系统 维数之咒 还原(数学) 维数(图论) 期限(时间) 算法 人工智能 数据挖掘 功率(物理) 数学优化 数学 量子力学 几何学 物理 纯数学
作者
Yahui Wang,Lingzhi Yi,Jiang Zhu,Jiangyong Liu,Shitong Wang,Bo Liu
出处
期刊:Recent Patents on Mechanical Engineering 卷期号:16 (1): 72-86 被引量:3
标识
DOI:10.2174/2212797615666221012091902
摘要

Background: Accurate power load forecasting is of great significance in ensuring power load planning, reliability and economic operation. The traditional power load is easy to be affected by climate, environment, date type and other factors, resulting in the problem of poor forecasting accuracy. Therefore, it is necessary to study power load forecasting. Objective: Through machine learning, dimension reduction method and intelligent optimization algorithm, the accuracy of load forecasting is improved Methods: In order to fully extract load information and improve the accuracy of short-term load forecasting for campus electricity, an improved combination of orthogonal dimensionality reduction and Bilstm is proposed to optimize the hyperparameters in BiLSTM using an improved gray wolf algorithm. Firstly, using the advantages of principal component analysis (PCA) and Locality Preserving Projection (LPP) to maintain the global and local structure of the data, respectively, the Orthogonal PCA-LPP(OPCA-LPP) dimensionality reduction method is proposed to reduce the dimensionality of the original multidimensional data. Finally, the dimensionality-reduced data is used as the input of BiLSTM and optimized by the improved Gray Wolf algorithm, which can enhance the prediction capability of the model and thus achieve accurate prediction of short-term electric load. Results: The Mae and RMSE of this paper are 1.6585 and 1.7602 respectively. The results show that the method proposed in this paper is reasonable Conclusion: This method is applied to power load forecasting. The comparative experimental results show that this method reduces the dimension of data input, simplifies the complexity of network input data, and improves the accuracy of load forecasting. Compared with other methods, it can effectively improve the accuracy of load forecasting, and provide a basis for formulating reasonable power grid operation mode and balanced dispatching of power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟雨行舟完成签到,获得积分10
刚刚
刚刚
刚刚
搜集达人应助刘星星采纳,获得30
1秒前
赘婿应助顺利水杯采纳,获得10
1秒前
1秒前
明亮的溪灵完成签到,获得积分10
1秒前
2秒前
2秒前
充电宝应助01259采纳,获得10
2秒前
天真的莺完成签到,获得积分10
3秒前
想要赚大钱完成签到,获得积分10
3秒前
大模型应助徐慕源采纳,获得10
3秒前
格格星发布了新的文献求助10
5秒前
sunnyyty发布了新的文献求助10
6秒前
tanjianxin发布了新的文献求助10
6秒前
JIE发布了新的文献求助10
6秒前
安娜完成签到,获得积分10
6秒前
怕黑砖头发布了新的文献求助10
7秒前
科目三应助饭小心采纳,获得10
7秒前
7秒前
科研通AI2S应助花陵采纳,获得10
7秒前
善学以致用应助大吴克采纳,获得10
9秒前
老实雁蓉完成签到,获得积分10
9秒前
良辰应助zjh采纳,获得10
9秒前
yulong完成签到 ,获得积分10
10秒前
热心的早晨完成签到,获得积分10
10秒前
如此纠结完成签到,获得积分10
10秒前
多多就是小豆芽完成签到 ,获得积分10
11秒前
11秒前
Owen应助Lwxbb采纳,获得10
11秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
11秒前
小小杜完成签到,获得积分10
11秒前
初心完成签到,获得积分20
11秒前
丽丽完成签到 ,获得积分10
11秒前
学术蟑螂发布了新的文献求助10
11秒前
文艺的竺完成签到,获得积分10
12秒前
小林太郎应助斯奈克采纳,获得20
12秒前
12秒前
情怀应助执笔曦倾年采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740