Short-term Power Load Forecasting Based on Orthogonal PCA-LPP Dimension Reduction and IGWO-BiLSTM

降维 计算机科学 主成分分析 电力系统 维数之咒 还原(数学) 维数(图论) 期限(时间) 算法 人工智能 数据挖掘 功率(物理) 数学优化 数学 量子力学 几何学 物理 纯数学
作者
Yahui Wang,Lingzhi Yi,Jiang Zhu,Jiangyong Liu,Shitong Wang,Bo Liu
出处
期刊:Recent Patents on Mechanical Engineering 卷期号:16 (1): 72-86 被引量:3
标识
DOI:10.2174/2212797615666221012091902
摘要

Background: Accurate power load forecasting is of great significance in ensuring power load planning, reliability and economic operation. The traditional power load is easy to be affected by climate, environment, date type and other factors, resulting in the problem of poor forecasting accuracy. Therefore, it is necessary to study power load forecasting. Objective: Through machine learning, dimension reduction method and intelligent optimization algorithm, the accuracy of load forecasting is improved Methods: In order to fully extract load information and improve the accuracy of short-term load forecasting for campus electricity, an improved combination of orthogonal dimensionality reduction and Bilstm is proposed to optimize the hyperparameters in BiLSTM using an improved gray wolf algorithm. Firstly, using the advantages of principal component analysis (PCA) and Locality Preserving Projection (LPP) to maintain the global and local structure of the data, respectively, the Orthogonal PCA-LPP(OPCA-LPP) dimensionality reduction method is proposed to reduce the dimensionality of the original multidimensional data. Finally, the dimensionality-reduced data is used as the input of BiLSTM and optimized by the improved Gray Wolf algorithm, which can enhance the prediction capability of the model and thus achieve accurate prediction of short-term electric load. Results: The Mae and RMSE of this paper are 1.6585 and 1.7602 respectively. The results show that the method proposed in this paper is reasonable Conclusion: This method is applied to power load forecasting. The comparative experimental results show that this method reduces the dimension of data input, simplifies the complexity of network input data, and improves the accuracy of load forecasting. Compared with other methods, it can effectively improve the accuracy of load forecasting, and provide a basis for formulating reasonable power grid operation mode and balanced dispatching of power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chens627完成签到,获得积分10
刚刚
暴力比巴波完成签到,获得积分10
1秒前
chenlang发布了新的文献求助10
1秒前
IKEA关注了科研通微信公众号
1秒前
2秒前
小程别放弃完成签到,获得积分10
2秒前
2秒前
阿难完成签到,获得积分20
3秒前
kento应助nuliguan采纳,获得100
4秒前
czcz发布了新的文献求助10
4秒前
5秒前
5秒前
打打应助无限的易云采纳,获得10
5秒前
小烟囱完成签到 ,获得积分10
5秒前
zho关闭了zho文献求助
5秒前
6秒前
bella发布了新的文献求助10
6秒前
肥四发布了新的文献求助10
6秒前
7秒前
QH发布了新的文献求助10
8秒前
orixero应助马瑞采纳,获得10
9秒前
9秒前
9秒前
煎熬日发布了新的文献求助10
10秒前
10秒前
linggaga完成签到,获得积分10
11秒前
香蕉凤凰发布了新的文献求助10
11秒前
风雨无阻完成签到 ,获得积分10
12秒前
无限的易云完成签到,获得积分10
13秒前
笨笨歌曲发布了新的文献求助10
13秒前
13秒前
轩少的发布了新的文献求助10
14秒前
肥四完成签到,获得积分10
14秒前
14秒前
RLL完成签到,获得积分10
15秒前
15秒前
和谐的小懒猪完成签到 ,获得积分10
16秒前
小猪坨完成签到,获得积分10
16秒前
莫西莫西完成签到,获得积分10
17秒前
Jiayou Zhang完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137260
求助须知:如何正确求助?哪些是违规求助? 2788392
关于积分的说明 7785921
捐赠科研通 2444458
什么是DOI,文献DOI怎么找? 1299916
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023