Condiment recognition using convolutional neural networks with attention mechanism

人工智能 卷积神经网络 残余物 模式识别(心理学) 计算机科学 人工神经网络 分类器(UML) 鉴定(生物学) 机器学习 算法 植物 生物
作者
Jiangong Ni,Yifan Zhao,Zhigang Zhou,Longgang Zhao,Zhongzhi Han
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:115: 104964-104964 被引量:5
标识
DOI:10.1016/j.jfca.2022.104964
摘要

Food adulteration is a signification food safety problem. Accurate identification of different foods is very important for the development of related food processing industries and food detection technology. In this study, CondimentNet was used to identify five kinds of food materials with similar appearance but different efficacy, such as fennel, cumin, caraway, Murraya paniculata and rosemary. Based on the original ResNet18 model, CondimentNet is mainly improved as follows:(1) An appropriate number of scSE attention modules are introduced. (2) Modified the size of the convolution kernel in the last residual module. (3) Modified the classifier structure. After pre-processing, the collected data is imported into CondimentNet for training and recognition. The experimental results show that the improved network recognition accuracy is 95.71 %, which is 1.11 % higher than the original resnet18 network. The above operation improves the recognition accuracy of the network without significantly increasing the training cost. In addition, compared with other advanced models, the superiority of CondimentNet network is verified. The classification of different varieties of spices by convolutional neural network verifies the feasibility of deep learning algorithms in the field of food detection, and promotes the development of identification technology of similar food raw materials. It provides a potential method for intelligent and accurate classification in the field of food.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Mystic采纳,获得10
刚刚
刚刚
浮游应助金博洋采纳,获得18
刚刚
刚刚
天天快乐应助哈哈王采纳,获得10
1秒前
1秒前
啦啦啦啦啦啦啦完成签到,获得积分10
1秒前
1秒前
呓语完成签到,获得积分10
2秒前
上官若男应助csy采纳,获得10
2秒前
可爱的雨柏完成签到,获得积分10
3秒前
蛙趣完成签到,获得积分10
3秒前
3秒前
果果完成签到,获得积分10
3秒前
yanwowo完成签到,获得积分10
3秒前
4秒前
星星完成签到,获得积分10
4秒前
4秒前
laojian完成签到 ,获得积分10
4秒前
李健应助深情傲柔采纳,获得10
5秒前
栓Q发布了新的文献求助10
5秒前
5秒前
CT民工发布了新的文献求助10
5秒前
mslln发布了新的文献求助10
5秒前
科研完成签到,获得积分20
6秒前
7秒前
PGZ完成签到,获得积分10
7秒前
醒醒完成签到,获得积分10
7秒前
赘婿应助ing采纳,获得10
8秒前
zhou完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
周晓发布了新的文献求助10
9秒前
beyond完成签到,获得积分10
10秒前
10秒前
做饭不咸完成签到,获得积分10
11秒前
无极微光应助木光采纳,获得20
11秒前
12秒前
www发布了新的文献求助10
12秒前
万能图书馆应助yanwowo采纳,获得10
12秒前
黄嘉慧完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978