亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Condiment recognition using convolutional neural networks with attention mechanism

人工智能 卷积神经网络 残余物 模式识别(心理学) 计算机科学 人工神经网络 分类器(UML) 鉴定(生物学) 机器学习 算法 植物 生物
作者
Jiangong Ni,Yifan Zhao,Zhigang Zhou,Longgang Zhao,Zhongzhi Han
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:115: 104964-104964 被引量:5
标识
DOI:10.1016/j.jfca.2022.104964
摘要

Food adulteration is a signification food safety problem. Accurate identification of different foods is very important for the development of related food processing industries and food detection technology. In this study, CondimentNet was used to identify five kinds of food materials with similar appearance but different efficacy, such as fennel, cumin, caraway, Murraya paniculata and rosemary. Based on the original ResNet18 model, CondimentNet is mainly improved as follows:(1) An appropriate number of scSE attention modules are introduced. (2) Modified the size of the convolution kernel in the last residual module. (3) Modified the classifier structure. After pre-processing, the collected data is imported into CondimentNet for training and recognition. The experimental results show that the improved network recognition accuracy is 95.71 %, which is 1.11 % higher than the original resnet18 network. The above operation improves the recognition accuracy of the network without significantly increasing the training cost. In addition, compared with other advanced models, the superiority of CondimentNet network is verified. The classification of different varieties of spices by convolutional neural network verifies the feasibility of deep learning algorithms in the field of food detection, and promotes the development of identification technology of similar food raw materials. It provides a potential method for intelligent and accurate classification in the field of food.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
yayah发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
40秒前
Wenjian7761完成签到,获得积分10
1分钟前
我是老大应助xcx采纳,获得10
1分钟前
1分钟前
zhao发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
eghiefefe完成签到,获得积分10
1分钟前
1分钟前
2分钟前
一只菜鸟发布了新的文献求助20
2分钟前
一只菜鸟完成签到,获得积分20
2分钟前
2分钟前
慕青应助Hodlumm采纳,获得10
2分钟前
liebealt完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
jiangjiang完成签到 ,获得积分0
2分钟前
3分钟前
3分钟前
灯露发布了新的文献求助10
3分钟前
zhao发布了新的文献求助10
3分钟前
灯露完成签到,获得积分10
3分钟前
3分钟前
Hodlumm发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
可爱的函函应助Hodlumm采纳,获得10
3分钟前
kjw关注了科研通微信公众号
3分钟前
3分钟前
kjw发布了新的文献求助10
4分钟前
情怀应助欢喜的跳跳糖采纳,获得10
4分钟前
4分钟前
Ava应助爱听歌笑寒采纳,获得10
4分钟前
Hazel完成签到,获得积分20
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595258
求助须知:如何正确求助?哪些是违规求助? 4007716
关于积分的说明 12408376
捐赠科研通 3686246
什么是DOI,文献DOI怎么找? 2031750
邀请新用户注册赠送积分活动 1065021
科研通“疑难数据库(出版商)”最低求助积分说明 950352