Condiment recognition using convolutional neural networks with attention mechanism

人工智能 卷积神经网络 残余物 模式识别(心理学) 计算机科学 人工神经网络 分类器(UML) 鉴定(生物学) 机器学习 算法 植物 生物
作者
Jiangong Ni,Yifan Zhao,Zhigang Zhou,Longgang Zhao,Zhongzhi Han
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:115: 104964-104964 被引量:5
标识
DOI:10.1016/j.jfca.2022.104964
摘要

Food adulteration is a signification food safety problem. Accurate identification of different foods is very important for the development of related food processing industries and food detection technology. In this study, CondimentNet was used to identify five kinds of food materials with similar appearance but different efficacy, such as fennel, cumin, caraway, Murraya paniculata and rosemary. Based on the original ResNet18 model, CondimentNet is mainly improved as follows:(1) An appropriate number of scSE attention modules are introduced. (2) Modified the size of the convolution kernel in the last residual module. (3) Modified the classifier structure. After pre-processing, the collected data is imported into CondimentNet for training and recognition. The experimental results show that the improved network recognition accuracy is 95.71 %, which is 1.11 % higher than the original resnet18 network. The above operation improves the recognition accuracy of the network without significantly increasing the training cost. In addition, compared with other advanced models, the superiority of CondimentNet network is verified. The classification of different varieties of spices by convolutional neural network verifies the feasibility of deep learning algorithms in the field of food detection, and promotes the development of identification technology of similar food raw materials. It provides a potential method for intelligent and accurate classification in the field of food.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
完美世界应助忘崽小油条采纳,获得10
1秒前
chall完成签到,获得积分10
2秒前
2秒前
扫沃特发布了新的文献求助10
3秒前
麻辣香香完成签到,获得积分10
3秒前
上官若男应助万坤采纳,获得10
3秒前
4秒前
Orange应助jingguofu采纳,获得10
5秒前
xinghe123发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
Maston完成签到,获得积分10
6秒前
muyu完成签到,获得积分10
6秒前
善良的豆芽完成签到,获得积分10
7秒前
7秒前
青争发布了新的文献求助10
7秒前
7秒前
霜降发布了新的文献求助10
8秒前
粗心的从露完成签到,获得积分10
8秒前
8秒前
小马甲应助ZMTW采纳,获得10
9秒前
LXJY发布了新的文献求助10
10秒前
Jalinezz完成签到,获得积分10
10秒前
寒冷威完成签到,获得积分10
10秒前
可爱的函函应助平平宁采纳,获得10
10秒前
复杂惜霜发布了新的文献求助10
10秒前
CipherSage应助cwm采纳,获得10
10秒前
无花果应助深情的友易采纳,获得10
13秒前
13秒前
老王完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
14秒前
毓桦发布了新的文献求助30
15秒前
苹果白凡完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707