已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Condiment recognition using convolutional neural networks with attention mechanism

人工智能 卷积神经网络 残余物 模式识别(心理学) 计算机科学 人工神经网络 分类器(UML) 鉴定(生物学) 机器学习 算法 植物 生物
作者
Jiangong Ni,Yifan Zhao,Zhigang Zhou,Longgang Zhao,Zhongzhi Han
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:115: 104964-104964 被引量:5
标识
DOI:10.1016/j.jfca.2022.104964
摘要

Food adulteration is a signification food safety problem. Accurate identification of different foods is very important for the development of related food processing industries and food detection technology. In this study, CondimentNet was used to identify five kinds of food materials with similar appearance but different efficacy, such as fennel, cumin, caraway, Murraya paniculata and rosemary. Based on the original ResNet18 model, CondimentNet is mainly improved as follows:(1) An appropriate number of scSE attention modules are introduced. (2) Modified the size of the convolution kernel in the last residual module. (3) Modified the classifier structure. After pre-processing, the collected data is imported into CondimentNet for training and recognition. The experimental results show that the improved network recognition accuracy is 95.71 %, which is 1.11 % higher than the original resnet18 network. The above operation improves the recognition accuracy of the network without significantly increasing the training cost. In addition, compared with other advanced models, the superiority of CondimentNet network is verified. The classification of different varieties of spices by convolutional neural network verifies the feasibility of deep learning algorithms in the field of food detection, and promotes the development of identification technology of similar food raw materials. It provides a potential method for intelligent and accurate classification in the field of food.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏紊完成签到 ,获得积分10
刚刚
1秒前
guzhiwen完成签到,获得积分10
1秒前
我是老大应助冒如怿采纳,获得10
3秒前
山阳县藏兵洞谷二完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
上官若男应助waa采纳,获得10
6秒前
7秒前
8秒前
直率的醉冬完成签到,获得积分10
9秒前
10秒前
小兔发布了新的文献求助10
10秒前
10秒前
糊涂的万发布了新的文献求助10
11秒前
爆米花应助dding采纳,获得10
11秒前
坦率的皮带完成签到,获得积分10
12秒前
1781266完成签到,获得积分10
13秒前
13秒前
14秒前
Upping关注了科研通微信公众号
14秒前
yxt完成签到,获得积分10
15秒前
16秒前
奇奇怪怪白白白完成签到,获得积分10
17秒前
waa发布了新的文献求助10
19秒前
19秒前
冒如怿发布了新的文献求助10
19秒前
20秒前
香蕉觅云应助美味蟹皇堡采纳,获得20
21秒前
娜子完成签到,获得积分10
22秒前
科研Mayormm完成签到 ,获得积分10
22秒前
Owen应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得20
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443502
求助须知:如何正确求助?哪些是违规求助? 4553396
关于积分的说明 14241800
捐赠科研通 4475069
什么是DOI,文献DOI怎么找? 2452248
邀请新用户注册赠送积分活动 1443172
关于科研通互助平台的介绍 1418794