Condiment recognition using convolutional neural networks with attention mechanism

人工智能 卷积神经网络 残余物 模式识别(心理学) 计算机科学 人工神经网络 分类器(UML) 鉴定(生物学) 机器学习 算法 植物 生物
作者
Jiangong Ni,Yifan Zhao,Zhigang Zhou,Longgang Zhao,Zhongzhi Han
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:115: 104964-104964 被引量:4
标识
DOI:10.1016/j.jfca.2022.104964
摘要

Food adulteration is a signification food safety problem. Accurate identification of different foods is very important for the development of related food processing industries and food detection technology. In this study, CondimentNet was used to identify five kinds of food materials with similar appearance but different efficacy, such as fennel, cumin, caraway, Murraya paniculata and rosemary. Based on the original ResNet18 model, CondimentNet is mainly improved as follows:(1) An appropriate number of scSE attention modules are introduced. (2) Modified the size of the convolution kernel in the last residual module. (3) Modified the classifier structure. After pre-processing, the collected data is imported into CondimentNet for training and recognition. The experimental results show that the improved network recognition accuracy is 95.71 %, which is 1.11 % higher than the original resnet18 network. The above operation improves the recognition accuracy of the network without significantly increasing the training cost. In addition, compared with other advanced models, the superiority of CondimentNet network is verified. The classification of different varieties of spices by convolutional neural network verifies the feasibility of deep learning algorithms in the field of food detection, and promotes the development of identification technology of similar food raw materials. It provides a potential method for intelligent and accurate classification in the field of food.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧虑的钻石应助Airi采纳,获得10
刚刚
科研小生完成签到,获得积分10
刚刚
SciGPT应助科研通管家采纳,获得10
2秒前
InfoNinja应助科研通管家采纳,获得30
2秒前
oceanao应助科研通管家采纳,获得10
2秒前
2秒前
InfoNinja应助科研通管家采纳,获得30
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
5秒前
6秒前
科研小生发布了新的文献求助10
6秒前
9秒前
临水思长发布了新的文献求助10
10秒前
土豆你个西红柿完成签到 ,获得积分10
14秒前
薛薛发布了新的文献求助10
14秒前
15秒前
mike2012完成签到 ,获得积分10
15秒前
蘇q完成签到 ,获得积分10
16秒前
亵渎完成签到,获得积分10
20秒前
吴大师已经玩明白了完成签到,获得积分10
21秒前
21秒前
23秒前
zhangyunyun完成签到,获得积分10
23秒前
struggling2026完成签到 ,获得积分10
24秒前
嗯哼举报机智向松求助涉嫌违规
24秒前
25秒前
汉堡包应助无心的胡萝卜采纳,获得10
27秒前
赘婿应助findtruth采纳,获得10
30秒前
郝宝真发布了新的文献求助10
31秒前
Ly驳回了华仔应助
32秒前
Kuhn_W完成签到,获得积分10
34秒前
36秒前
赎罪完成签到 ,获得积分10
36秒前
随机子应助高丽娜采纳,获得10
37秒前
爆米花应助临水思长采纳,获得10
38秒前
chenyh应助allrubbish采纳,获得10
40秒前
小点点发布了新的文献求助10
40秒前
灵巧汉堡完成签到 ,获得积分10
42秒前
45秒前
findtruth发布了新的文献求助10
48秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165402
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912856
捐赠科研通 2476071
什么是DOI,文献DOI怎么找? 1318651
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388