A CT-Based Deep Learning Radiomics Nomogram to Predict Histological Grades of Head and Neck Squamous Cell Carcinoma

列线图 头颈部鳞状细胞癌 医学 无线电技术 逻辑回归 病理 头颈部癌 曲线下面积 头颈部 内科学 放射科 肿瘤科 放射治疗 外科
作者
Ying-mei Zheng,Junyi Che,Ming-gang Yuan,Zengjie Wu,Jing Pang,Ruizhi Zhou,Xiaoli Li,Cheng Dong
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (8): 1591-1599 被引量:47
标识
DOI:10.1016/j.acra.2022.11.007
摘要

Accurate pretreatment assessment of histological differentiation grade of head and neck squamous cell carcinoma (HNSCC) is crucial for prognosis evaluation. This study aimed to construct and validate a contrast-enhanced computed tomography (CECT)-based deep learning radiomics nomogram (DLRN) to predict histological differentiation grades of HNSCC.A total of 204 patients with HNSCC who underwent CECT scans were enrolled in this study. The participants recruited from two hospitals were split into a training set (n=124, 74 well/moderately differentiated and 50 poorly differentiated) of patients from one hospital and an external test set of patients from the other hospital (n=80, 49 well/moderately differentiated and 31 poorly differentiated). CECT-based manually-extracted radiomics (MER) features and deep learning (DL) features were extracted and selected. The selected MER features and DL features were then combined to construct a DLRN via multivariate logistic regression. The predictive performance of the DLRN was assessed using ROCs and decision curve analysis (DCA).Three MER features and seven DL features were finally selected. The DLRN incorporating the selected MER and DL features showed good predictive value for the histological differentiation grades of HNSCC (well/moderately differentiated vs. poorly differentiated) in both the training (AUC, 0.878) and test (AUC, 0.822) sets. DCA demonstrated that the DLRN was clinically useful for predicting histological differentiation grades of HNSCC.A CECT-based DLRN was constructed to predict histological differentiation grades of HNSCC. The DLRN showed good predictive efficacy and might be useful for prognostic evaluation of patients with HNSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助风华采纳,获得10
1秒前
xmhxpz完成签到,获得积分10
1秒前
3秒前
Youngen发布了新的文献求助10
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
online1881完成签到,获得积分10
7秒前
会飞的鱼完成签到,获得积分10
10秒前
小余同学完成签到 ,获得积分10
11秒前
吉涛发布了新的文献求助10
12秒前
田...完成签到,获得积分10
12秒前
阔达如柏完成签到,获得积分10
13秒前
wy完成签到,获得积分10
14秒前
Ammon完成签到,获得积分10
15秒前
明理小凝完成签到 ,获得积分10
15秒前
大苗完成签到,获得积分10
17秒前
曾经的凌青完成签到 ,获得积分10
18秒前
19秒前
体贴的手链完成签到,获得积分10
19秒前
19秒前
Youngen完成签到,获得积分10
20秒前
小樊爱摸鱼完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
21秒前
22秒前
22秒前
22秒前
wy应助科研通管家采纳,获得10
22秒前
wy应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
22秒前
22秒前
22秒前
22秒前
思源应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789530
求助须知:如何正确求助?哪些是违规求助? 5720862
关于积分的说明 15474819
捐赠科研通 4917334
什么是DOI,文献DOI怎么找? 2646933
邀请新用户注册赠送积分活动 1594542
关于科研通互助平台的介绍 1549081