A CT-Based Deep Learning Radiomics Nomogram to Predict Histological Grades of Head and Neck Squamous Cell Carcinoma

列线图 头颈部鳞状细胞癌 医学 无线电技术 逻辑回归 病理 头颈部癌 曲线下面积 接收机工作特性 内科学 放射科 肿瘤科 放射治疗
作者
Ying-Mei Zheng,Junyi Che,Ming-gang Yuan,Zengjie Wu,Jing Pang,Ruizhi Zhou,Xiaoli Li,Cheng Dong
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (8): 1591-1599 被引量:15
标识
DOI:10.1016/j.acra.2022.11.007
摘要

Accurate pretreatment assessment of histological differentiation grade of head and neck squamous cell carcinoma (HNSCC) is crucial for prognosis evaluation. This study aimed to construct and validate a contrast-enhanced computed tomography (CECT)-based deep learning radiomics nomogram (DLRN) to predict histological differentiation grades of HNSCC.A total of 204 patients with HNSCC who underwent CECT scans were enrolled in this study. The participants recruited from two hospitals were split into a training set (n=124, 74 well/moderately differentiated and 50 poorly differentiated) of patients from one hospital and an external test set of patients from the other hospital (n=80, 49 well/moderately differentiated and 31 poorly differentiated). CECT-based manually-extracted radiomics (MER) features and deep learning (DL) features were extracted and selected. The selected MER features and DL features were then combined to construct a DLRN via multivariate logistic regression. The predictive performance of the DLRN was assessed using ROCs and decision curve analysis (DCA).Three MER features and seven DL features were finally selected. The DLRN incorporating the selected MER and DL features showed good predictive value for the histological differentiation grades of HNSCC (well/moderately differentiated vs. poorly differentiated) in both the training (AUC, 0.878) and test (AUC, 0.822) sets. DCA demonstrated that the DLRN was clinically useful for predicting histological differentiation grades of HNSCC.A CECT-based DLRN was constructed to predict histological differentiation grades of HNSCC. The DLRN showed good predictive efficacy and might be useful for prognostic evaluation of patients with HNSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
3秒前
3秒前
qjun完成签到,获得积分20
3秒前
温敏发布了新的文献求助10
4秒前
camelia发布了新的文献求助10
4秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
一一应助科研通管家采纳,获得30
6秒前
一一应助科研通管家采纳,获得30
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
科研通AI2S应助向xiang123采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Singularity应助科研通管家采纳,获得20
6秒前
6秒前
科研通AI2S应助等风吹采纳,获得10
7秒前
7秒前
Lucas应助贲半梦采纳,获得10
7秒前
英俊的铭应助123butterfly采纳,获得10
8秒前
8秒前
干净的老虎完成签到,获得积分10
9秒前
QQQQ发布了新的文献求助10
11秒前
11秒前
Ava应助壮观静柏采纳,获得10
13秒前
weirdo发布了新的文献求助10
13秒前
14秒前
唐小刚完成签到,获得积分10
15秒前
贲半梦发布了新的文献求助10
19秒前
科研通AI2S应助枳甜采纳,获得10
19秒前
Singularity应助枳甜采纳,获得10
19秒前
葭月十七发布了新的文献求助10
22秒前
思源应助hchen采纳,获得10
24秒前
西西弗斯完成签到,获得积分0
24秒前
Lwxbb完成签到,获得积分10
24秒前
木棉完成签到 ,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138888
求助须知:如何正确求助?哪些是违规求助? 2789815
关于积分的说明 7792820
捐赠科研通 2446185
什么是DOI,文献DOI怎么找? 1300930
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079