已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A CT-Based Deep Learning Radiomics Nomogram to Predict Histological Grades of Head and Neck Squamous Cell Carcinoma

列线图 头颈部鳞状细胞癌 医学 无线电技术 逻辑回归 病理 头颈部癌 曲线下面积 头颈部 内科学 放射科 肿瘤科 放射治疗 外科
作者
Ying-mei Zheng,Junyi Che,Ming-gang Yuan,Zengjie Wu,Jing Pang,Ruizhi Zhou,Xiaoli Li,Cheng Dong
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (8): 1591-1599 被引量:21
标识
DOI:10.1016/j.acra.2022.11.007
摘要

Accurate pretreatment assessment of histological differentiation grade of head and neck squamous cell carcinoma (HNSCC) is crucial for prognosis evaluation. This study aimed to construct and validate a contrast-enhanced computed tomography (CECT)-based deep learning radiomics nomogram (DLRN) to predict histological differentiation grades of HNSCC.A total of 204 patients with HNSCC who underwent CECT scans were enrolled in this study. The participants recruited from two hospitals were split into a training set (n=124, 74 well/moderately differentiated and 50 poorly differentiated) of patients from one hospital and an external test set of patients from the other hospital (n=80, 49 well/moderately differentiated and 31 poorly differentiated). CECT-based manually-extracted radiomics (MER) features and deep learning (DL) features were extracted and selected. The selected MER features and DL features were then combined to construct a DLRN via multivariate logistic regression. The predictive performance of the DLRN was assessed using ROCs and decision curve analysis (DCA).Three MER features and seven DL features were finally selected. The DLRN incorporating the selected MER and DL features showed good predictive value for the histological differentiation grades of HNSCC (well/moderately differentiated vs. poorly differentiated) in both the training (AUC, 0.878) and test (AUC, 0.822) sets. DCA demonstrated that the DLRN was clinically useful for predicting histological differentiation grades of HNSCC.A CECT-based DLRN was constructed to predict histological differentiation grades of HNSCC. The DLRN showed good predictive efficacy and might be useful for prognostic evaluation of patients with HNSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
7秒前
落樱幻梦染星尘完成签到,获得积分10
8秒前
8秒前
超帅书文发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
zll发布了新的文献求助10
21秒前
yanxueyi完成签到 ,获得积分10
21秒前
kiki完成签到,获得积分10
22秒前
123完成签到 ,获得积分10
22秒前
超帅书文完成签到,获得积分10
23秒前
28秒前
LUJyyyy完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
医疗废物专用车乘客完成签到,获得积分10
30秒前
若雨凌风发布了新的文献求助10
33秒前
36秒前
迷茫的一代完成签到,获得积分10
40秒前
王博士完成签到,获得积分10
41秒前
夏虫语冰发布了新的文献求助10
41秒前
Yin完成签到,获得积分10
46秒前
02发布了新的文献求助10
46秒前
量子星尘发布了新的文献求助10
48秒前
50秒前
L_MD完成签到,获得积分10
51秒前
yao完成签到,获得积分10
51秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
朴实的亦云完成签到,获得积分10
1分钟前
飘逸草丛发布了新的文献求助30
1分钟前
松鼠一只完成签到,获得积分10
1分钟前
wang完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
今后应助ChencanFang采纳,获得10
1分钟前
未雨绸缪完成签到,获得积分10
1分钟前
chem-w完成签到,获得积分20
1分钟前
Louise关注了科研通微信公众号
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666287
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762726
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185