脂联素
脂肪生成
过氧化物酶体
过氧化物酶体增殖物激活受体
三聚体
药效团
PPAR激动剂
化学
受体
生物
药理学
生物化学
内分泌学
体外
二聚体
糖尿病
胰岛素抵抗
有机化学
作者
Jae-Kyeong Kim,Hyejin Ko,Jae–Seoun Hur,Seungchan An,Jin Woo Lee,Stephen T. Deyrup,Minsoo Noh,Sang Hee Shim
标识
DOI:10.1021/acs.jnatprod.2c00791
摘要
Adiponectin-synthesis-promoting compounds possess therapeutic potential to treat diverse metabolic diseases, including obesity and diabetes. Phenotypic screening to find adiponectin-synthesis-promoting compounds was performed using the adipogenesis model of human bone marrow mesenchymal stem cells. The extract of the endolichenic fungus Daldinia childiae 047215 significantly promoted adiponectin production. Bioactivity-guided isolation led to 13 active polyketides (1-13), which include naphthol monomers, dimers, and trimers. To the best of our knowledge, trimers of naphthol (1-4) have not been previously isolated as either natural or synthetic products. The novel naphthol trimer 3,1',3',3″-ternaphthalene-5,5',5″-trimethoxy-4,4',4″-triol (2) and a dimer, nodulisporin A (12), exhibited concentration-dependent adiponectin-synthesis-promoting activity (EC50 30.8 and 15.2 μM, respectively). Compounds 2 and 12 bound to all three peroxisome proliferator-activated receptor (PPAR) subtypes, PPARα, PPARγ, and PPARδ. In addition, compound 2 transactivated retinoid X receptor α, whereas 12 did not. Naphthol oligomers 2 and 12 represent novel pan-PPAR modulators and are potential pharmacophores for designing new therapeutic agents against hypoadiponectinemia-associated metabolic diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI