An intelligent matching recommendation algorithm for a manufacturing capacity sharing platform with fairness concerns

渡线 匹配(统计) 计算机科学 遗传算法 背景(考古学) 数学优化 订单(交换) Blossom算法 体积热力学 算法 人工智能 机器学习 业务 数学 物理 统计 古生物学 生物 量子力学 财务
作者
Lei Xie,Jianghua Zhang,Qingchun Meng,Jiwang Yan,Weibo Liu
出处
期刊:International Journal of Production Research [Informa]
卷期号:: 1-19 被引量:2
标识
DOI:10.1080/00207543.2022.2155999
摘要

A supply and demand mismatch, or imbalance of the amount of supplies in the market, is always an issue and can happen all the time. Capacity sharing is an effective way to address this problem, and the capacity sharing platform facilitates the optimal matching between multiple capacity buyers and sellers. In the context of Industry 4.0, many industries are adopting intelligent algorithms to assist in decision-making. This paper presents an optimal or near-optimal matching algorithm to cope with a large volume of capacity-sharing problems. The fairness of the matching solution is captured by including three objectives from platform, sellers and buyers. In this paper, a 2-dimensional crossover and an order-first mutation are developed and employed with genetic algorithms (GA), including GA and NSGA-II. Additionally, a novel repair mechanism is proposed by considering various constraints to transform infeasible solutions into feasible ones. Two matching schemes are studied based on whether orders from buyers can be split or not. The results show that both algorithms based on traditional GA and NSGA-II are effective for different schemes. In addition, it is found that GA has better performance in the case of ‘more sellers’ and NSGA-II shows better performance in the ‘more buyers’ case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈的代珊完成签到 ,获得积分10
4秒前
栋dd完成签到 ,获得积分10
5秒前
5秒前
6秒前
orixero应助星河梦枕采纳,获得10
7秒前
11秒前
11秒前
希望天下0贩的0应助PanCiro采纳,获得10
12秒前
劲秉应助Lily采纳,获得10
13秒前
13秒前
欣欣然完成签到,获得积分10
14秒前
香蕉觅云应助Fine采纳,获得10
15秒前
dxction完成签到,获得积分10
16秒前
16秒前
仲达发布了新的文献求助10
16秒前
laoxu1983完成签到,获得积分10
17秒前
义气幼珊完成签到 ,获得积分10
19秒前
天真的皓轩完成签到,获得积分10
19秒前
cocolu应助qiu采纳,获得10
19秒前
PanCiro完成签到,获得积分10
21秒前
仲达完成签到,获得积分10
21秒前
22秒前
手机应助仲达采纳,获得10
23秒前
恍恍惚惚完成签到,获得积分10
23秒前
年鱼精完成签到 ,获得积分10
24秒前
24秒前
自然完成签到,获得积分10
25秒前
kkssrrrr完成签到,获得积分10
25秒前
可爱千兰完成签到,获得积分10
25秒前
英勇的半蕾完成签到,获得积分20
25秒前
谦让的西装完成签到 ,获得积分10
26秒前
英姑应助北风和太阳采纳,获得10
27秒前
Fine发布了新的文献求助10
27秒前
劲秉应助Rock采纳,获得80
28秒前
carrier_hc完成签到,获得积分10
29秒前
追寻的平安完成签到 ,获得积分10
29秒前
曾医生完成签到,获得积分10
30秒前
32秒前
Akim应助我我我采纳,获得10
33秒前
科研通AI2S应助受伤觅柔采纳,获得10
34秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266192
求助须知:如何正确求助?哪些是违规求助? 2905949
关于积分的说明 8336334
捐赠科研通 2576379
什么是DOI,文献DOI怎么找? 1400493
科研通“疑难数据库(出版商)”最低求助积分说明 654786
邀请新用户注册赠送积分活动 633661