清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Face emotion recognition based on infrared thermal imagery by applying machine learning and parallelism

计算机科学 卷积神经网络 人工智能 稳健性(进化) 面部识别系统 面子(社会学概念) 热红外 模式识别(心理学) 支持向量机 三维人脸识别 面部表情 鉴定(生物学) 计算机视觉 图像处理 机器学习 语音识别 人脸检测 图像(数学) 红外线的 基因 生物 光学 物理 社会学 植物 生物化学 化学 社会科学
作者
Basem Assiri,Md. Motahar Hossain
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:20 (1): 913-929 被引量:6
标识
DOI:10.3934/mbe.2023042
摘要

Over time for the past few years, facial expression identification has been a promising area. However, darkness, lighting conditions, and other factors make facial emotion identification challenging to detect. As a result, thermal images are suggested as a solution to such problems and for a variety of other benefits. Furthermore, focusing on significant regions of a face rather than the entire face is sufficient for reducing processing and improving accuracy at the same time. This research introduces novel infrared thermal image-based approaches for facial emotion recognition. First, the entire image of the face is separated into four pieces. Then, we accepted only four active regions (ARs) to prepare training and testing datasets. These four ARs are the left eye, right eye, and lips areas. In addition, ten-folded cross-validation is proposed to improve recognition accuracy using Convolutional Neural Network (CNN), a machine learning technique. Furthermore, we incorporated a parallelism technique to reduce processing-time in testing and training datasets. As a result, we have seen that the processing time reduces to 50%. Finally, a decision-level fusion is applied to improve the recognition accuracy. As a result, the proposed technique achieves a recognition accuracy of 96.87 %. The achieved accuracy ascertains the robustness of our proposed scheme.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyp完成签到 ,获得积分10
7秒前
FashionBoy应助王颖超采纳,获得10
9秒前
二三完成签到 ,获得积分10
17秒前
20秒前
王颖超发布了新的文献求助10
27秒前
欣喜的香菱完成签到 ,获得积分10
28秒前
cheng完成签到,获得积分10
31秒前
科研通AI6.1应助内向的绿采纳,获得10
34秒前
灿烂而孤独的八戒完成签到 ,获得积分0
35秒前
随心所欲完成签到 ,获得积分10
48秒前
领导范儿应助嘻嘻哈哈采纳,获得10
1分钟前
1分钟前
ceeray23发布了新的文献求助50
1分钟前
彩色的芷容完成签到 ,获得积分10
1分钟前
wrl2023完成签到,获得积分10
1分钟前
内向的绿发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Freeasy完成签到 ,获得积分10
1分钟前
嘻嘻哈哈发布了新的文献求助10
1分钟前
1分钟前
万能图书馆应助嘻嘻哈哈采纳,获得10
1分钟前
2分钟前
Mrmao0213发布了新的文献求助10
2分钟前
2分钟前
gwbk完成签到,获得积分10
2分钟前
夜休2024完成签到 ,获得积分10
2分钟前
完美世界应助Mrmao0213采纳,获得10
2分钟前
桥西小河完成签到 ,获得积分10
2分钟前
2分钟前
joysa完成签到,获得积分10
2分钟前
ph完成签到 ,获得积分10
3分钟前
zhzhzh完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
小二郎应助内向的绿采纳,获得10
3分钟前
poki完成签到 ,获得积分10
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773041
求助须知:如何正确求助?哪些是违规求助? 5605571
关于积分的说明 15430331
捐赠科研通 4905756
什么是DOI,文献DOI怎么找? 2639694
邀请新用户注册赠送积分活动 1587610
关于科研通互助平台的介绍 1542574