C2SP-Net: Joint Compression and Classification Network for Epilepsy Seizure Prediction

计算机科学 数据压缩 带宽(计算) 数据压缩比 压缩比 架空(工程) 计算 人工智能 实时计算 算法 图像压缩 工程类 电信 操作系统 图像(数学) 汽车工程 内燃机 图像处理
作者
Di Wu,Yi Shi,Ziyu Wang,Jie Yang,Mohamad Sawan
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 841-850 被引量:4
标识
DOI:10.1109/tnsre.2023.3235390
摘要

Recent developments in brain-machine inter-face technology have rendered seizure prediction possible. However, the transmission of a large volume of electro-physiological signals between sensors and processing apparatuses and the related computation become two major bottlenecks for seizure prediction systems due to the constrained bandwidth and limited computational resources, especially for power-critical wearable and implantable medical devices. Although many data compression methods can be adopted to compress the signals to reduce communication bandwidth requirement, they require complex compression and reconstruction procedures before the signal can be used for seizure prediction. In this paper, we propose C2SP-Net, a framework to jointly solve compression, prediction, and reconstruction without extra computation overhead. The framework consists of a plug-and-play in-sensor compression matrix to reduce transmission bandwidth requirements. The compressed signal can be utilized for seizure prediction without additional reconstruction steps. Reconstruction of the original signal can also be carried out in high fidelity. Compression and classification overhead from the energy consumption perspective, prediction accuracy, sensitivity, false prediction rate, and reconstruction quality of the proposed framework are evaluated using various compression ratios. The experimental results illustrate that our proposed framework is energy efficient and outperforms the competitive state-of-the-art baselines by a large margin in prediction accuracy. In particular, our proposed method produces an average loss of 0.6% in prediction accuracy with a compression ratio ranging from 1/2 to 1/16.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助wr采纳,获得10
刚刚
mmyhn给xiaoziqing1的求助进行了留言
刚刚
1秒前
金jin发布了新的文献求助10
1秒前
dwhnx完成签到,获得积分10
1秒前
CipherSage应助Amie采纳,获得10
2秒前
长江长发布了新的文献求助10
2秒前
李浅墨发布了新的文献求助10
2秒前
3秒前
3秒前
NexusExplorer应助星海梦幻采纳,获得10
3秒前
zcc111发布了新的文献求助10
4秒前
彳亍而行完成签到,获得积分10
4秒前
英俊的铭应助高高的梦岚采纳,获得10
4秒前
4秒前
5秒前
5秒前
123发布了新的文献求助10
6秒前
6秒前
Jasper应助不i采纳,获得10
6秒前
JEFFREYJIA完成签到,获得积分10
6秒前
6秒前
西侧发布了新的文献求助10
6秒前
bkagyin应助清风采纳,获得10
6秒前
8秒前
彦佳雪完成签到,获得积分20
8秒前
折耳根完成签到 ,获得积分10
8秒前
CipherSage应助sncn采纳,获得10
8秒前
蓝天白云发布了新的文献求助10
9秒前
云上人发布了新的文献求助10
9秒前
qiu发布了新的文献求助10
9秒前
羊羊羊完成签到,获得积分10
9秒前
10秒前
yxy发布了新的文献求助10
10秒前
Owen应助dl采纳,获得30
10秒前
11秒前
11秒前
发发发布了新的文献求助10
12秒前
超帅书文发布了新的文献求助10
13秒前
上官若男应助林小雨采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559395
求助须知:如何正确求助?哪些是违规求助? 3134035
关于积分的说明 9405099
捐赠科研通 2834084
什么是DOI,文献DOI怎么找? 1557841
邀请新用户注册赠送积分活动 727741
科研通“疑难数据库(出版商)”最低求助积分说明 716399