高光谱成像
羽流
遥感
地球观测
深度学习
甲烷
卫星
计算机科学
环境科学
卫星图像
人工智能
气象学
地质学
航空航天工程
工程类
地理
生物
生态学
作者
Alexis Groshenry,Clément Giron,Thomas Lauvaux,Alexandre d’Aspremont,Thibaud Ehret
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:1
标识
DOI:10.48550/arxiv.2211.15429
摘要
The new generation of hyperspectral imagers, such as PRISMA, has improved significantly our detection capability of methane (CH4) plumes from space at high spatial resolution (30m). We present here a complete framework to identify CH4 plumes using images from the PRISMA satellite mission and a deep learning model able to detect plumes over large areas. To compensate for the relative scarcity of PRISMA images, we trained our model by transposing high resolution plumes from Sentinel-2 to PRISMA. Our methodology thus avoids computationally expensive synthetic plume generation from Large Eddy Simulations by generating a broad and realistic training database, and paves the way for large-scale detection of methane plumes using future hyperspectral sensors (EnMAP, EMIT, CarbonMapper).
科研通智能强力驱动
Strongly Powered by AbleSci AI