A review of the application of deep learning in intelligent fault diagnosis of rotating machinery

断层(地质) 卷积神经网络 对抗制 人工智能 一般化 深度学习 人工神经网络 机器学习 工程类 计算机科学 地质学 地震学 数学 数学分析
作者
Zhiqin Zhu,Yangbo Lei,Guanqiu Qi,Yi Chai,Neal Mazur,Yiyao An,Xinghua Huang
出处
期刊:Measurement [Elsevier BV]
卷期号:206: 112346-112346 被引量:279
标识
DOI:10.1016/j.measurement.2022.112346
摘要

With the rapid development of industry, fault diagnosis plays a more and more important role in maintaining the health of equipment and ensuring the safe operation of equipment. Due to large-size monitoring data of equipment conditions, deep learning (DL) has been widely used in the fault diagnosis of rotating machinery. In the past few years, a large number of related solutions have been proposed. Although many related survey papers have been published, they lack a generalization of the issues and methods raised in existing research and applications. Therefore, this paper reviews recent research on DL-based intelligent fault diagnosis for rotating machinery. Based on deep learning models, this paper divides existing research into five categories: deep belief networks (DBN), autoencoders (AE), convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial networks (GAN). This paper introduces the basic principles of these mainstream solutions, discusses related applications, and summarizes the application features of various solutions. The main problems of existing DL-based intelligent fault diagnosis (IFD) research are summarized as small-size sample imbalance and transfer fault diagnosis. The future research trends and hotspots are pointed out. It is expected that this survey paper can help readers understand the current problems and existing solutions in DL-based rotating machinery fault diagnosis, and effectively carry out related research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发酒疯很方便吃完成签到,获得积分10
刚刚
碧蓝的机器猫完成签到 ,获得积分10
1秒前
邓佳鑫Alan应助wyblobin采纳,获得10
1秒前
害羞的梦竹完成签到,获得积分10
2秒前
刘珍荣完成签到,获得积分10
3秒前
3秒前
3秒前
祖乐松完成签到,获得积分10
3秒前
橙子发布了新的文献求助10
3秒前
清雨桩完成签到,获得积分10
3秒前
Akashi发布了新的文献求助10
4秒前
4秒前
111222完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
pantio完成签到,获得积分10
4秒前
XXXX完成签到,获得积分10
5秒前
黎黎完成签到,获得积分10
5秒前
5秒前
默默地读文献应助光亮萤采纳,获得10
5秒前
鲨鱼也蛀牙完成签到,获得积分10
6秒前
田様应助phoebe采纳,获得10
7秒前
张111完成签到,获得积分10
7秒前
英俊的胜发布了新的文献求助30
8秒前
帅男发布了新的文献求助10
8秒前
三木完成签到 ,获得积分10
8秒前
广州东站完成签到,获得积分10
9秒前
ban完成签到,获得积分10
9秒前
9秒前
liwang9301完成签到,获得积分10
10秒前
COCO完成签到,获得积分10
10秒前
10秒前
Luv_JoeyZhang完成签到 ,获得积分10
11秒前
热心枕头完成签到,获得积分10
11秒前
橙子完成签到,获得积分20
12秒前
13秒前
13秒前
Glngar完成签到,获得积分10
13秒前
13秒前
KevinT完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661230
求助须知:如何正确求助?哪些是违规求助? 3222298
关于积分的说明 9744632
捐赠科研通 2931923
什么是DOI,文献DOI怎么找? 1605300
邀请新用户注册赠送积分活动 757805
科研通“疑难数据库(出版商)”最低求助积分说明 734569