HS-Vectors: Heart Sound Embeddings for Abnormal Heart Sound Detection Based on Time-Compressed and Frequency-Expanded TDNN With Dynamic Mask Encoder

计算机科学 语音识别 嵌入 模式识别(心理学) 光谱图 人工神经网络 生物声学 人工智能 心音 编码器 电信 医学 操作系统 内科学
作者
Lihong Qiao,Yonghao Gao,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1364-1374 被引量:7
标识
DOI:10.1109/jbhi.2022.3227585
摘要

In recent years, auxiliary diagnosis technology for cardiovascular disease based on abnormal heart sound detection has become a research hotspot. Heart sound signals are promising in the preliminary diagnosis of cardiovascular diseases. Previous studies have focused on capturing the local characteristics of heart sounds. In this paper, we investigate a method for mapping heart sound signals with complex patterns to fixed-length feature embedding called HS-Vectors for abnormal heart sound detection. To get the full embedding of the complex heart sound, HS-Vectors are obtained through the Time-Compressed and Frequency-Expanded Time-Delay Neural Network(TCFE-TDNN) and the Dynamic Masked-Attention (DMA) module. HS-Vectors extract and utilize the global and critical heart sound characteristics by masking out irreverent information. Based on the TCFE-TDNN module, the heart sound signal within a certain time is projected into fixed-length embedding. Then, with a learnable mask attention matrix, DMA stats pooling aggregates multi-scale hidden features from different TCFE-TDNN layers and masks out irrelevant frame-level features. Experimental evaluations are performed on a 10-fold cross-validation task using the 2016 PhysioNet/CinC Challenge dataset and the new publicly available pediatric heart sound dataset we collected. Experimental results demonstrate that the proposed method excels the state-of-the-art models in abnormality detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅快老虎发布了新的文献求助10
刚刚
1秒前
爱听歌蘑菇完成签到,获得积分10
1秒前
小高完成签到 ,获得积分10
1秒前
3秒前
3秒前
3秒前
hygge完成签到 ,获得积分10
3秒前
藤井树发布了新的文献求助10
3秒前
4秒前
huilini完成签到,获得积分10
4秒前
zwl完成签到,获得积分10
4秒前
传奇3应助鱼雁采纳,获得10
4秒前
4秒前
5秒前
yang发布了新的文献求助10
6秒前
6秒前
weiwei发布了新的文献求助10
8秒前
迦佭发布了新的文献求助10
8秒前
kuma完成签到,获得积分20
9秒前
zdy发布了新的文献求助10
10秒前
11秒前
1111发布了新的文献求助10
11秒前
英俊的铭应助跳跃的洪纲采纳,获得10
12秒前
12秒前
13秒前
赘婿应助陈住气采纳,获得10
15秒前
15秒前
等你下课发布了新的文献求助10
16秒前
16秒前
希望天下0贩的0应助二狗采纳,获得10
17秒前
JamesPei应助weiwei采纳,获得10
18秒前
Stanford发布了新的文献求助10
18秒前
SHAO应助zhaxiao采纳,获得10
18秒前
Singularity应助zhaxiao采纳,获得10
18秒前
今后应助zhaxiao采纳,获得10
18秒前
我是老大应助zhaxiao采纳,获得10
18秒前
19秒前
19秒前
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214