HS-Vectors: Heart Sound Embeddings for Abnormal Heart Sound Detection Based on Time-Compressed and Frequency-Expanded TDNN With Dynamic Mask Encoder

计算机科学 语音识别 嵌入 模式识别(心理学) 光谱图 人工神经网络 生物声学 人工智能 心音 编码器 电信 医学 操作系统 内科学
作者
Lihong Qiao,Yonghao Gao,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1364-1374 被引量:7
标识
DOI:10.1109/jbhi.2022.3227585
摘要

In recent years, auxiliary diagnosis technology for cardiovascular disease based on abnormal heart sound detection has become a research hotspot. Heart sound signals are promising in the preliminary diagnosis of cardiovascular diseases. Previous studies have focused on capturing the local characteristics of heart sounds. In this paper, we investigate a method for mapping heart sound signals with complex patterns to fixed-length feature embedding called HS-Vectors for abnormal heart sound detection. To get the full embedding of the complex heart sound, HS-Vectors are obtained through the Time-Compressed and Frequency-Expanded Time-Delay Neural Network(TCFE-TDNN) and the Dynamic Masked-Attention (DMA) module. HS-Vectors extract and utilize the global and critical heart sound characteristics by masking out irreverent information. Based on the TCFE-TDNN module, the heart sound signal within a certain time is projected into fixed-length embedding. Then, with a learnable mask attention matrix, DMA stats pooling aggregates multi-scale hidden features from different TCFE-TDNN layers and masks out irrelevant frame-level features. Experimental evaluations are performed on a 10-fold cross-validation task using the 2016 PhysioNet/CinC Challenge dataset and the new publicly available pediatric heart sound dataset we collected. Experimental results demonstrate that the proposed method excels the state-of-the-art models in abnormality detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到,获得积分10
1秒前
时倾完成签到,获得积分10
1秒前
清脆冬日完成签到 ,获得积分10
1秒前
2秒前
善学以致用应助Mipaa采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
积极松完成签到 ,获得积分10
5秒前
一又二分之一完成签到,获得积分10
6秒前
xieyangyu完成签到 ,获得积分10
6秒前
ARESCI发布了新的文献求助10
7秒前
lyp发布了新的文献求助10
8秒前
淡淡尔烟发布了新的文献求助10
10秒前
Gloyxtg发布了新的文献求助10
10秒前
思源应助王月帆采纳,获得10
11秒前
99668完成签到,获得积分10
12秒前
小马甲应助周美言采纳,获得10
12秒前
可爱的函函应助以鹿之路采纳,获得10
12秒前
Roxanne发布了新的文献求助20
12秒前
12秒前
Jasper应助星星采纳,获得10
13秒前
13秒前
kikeva发布了新的文献求助10
16秒前
情怀应助彩彩采纳,获得10
17秒前
大模型应助Heyley采纳,获得10
17秒前
科研通AI6应助hh采纳,获得10
17秒前
研友_VZG7GZ应助叶涛采纳,获得10
18秒前
海棠发布了新的文献求助10
19秒前
云上完成签到,获得积分10
20秒前
21秒前
曦cherish完成签到,获得积分10
24秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
啊哦发布了新的文献求助10
26秒前
娇气的冬菱完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649984
求助须知:如何正确求助?哪些是违规求助? 4779520
关于积分的说明 15050791
捐赠科研通 4808902
什么是DOI,文献DOI怎么找? 2571905
邀请新用户注册赠送积分活动 1528157
关于科研通互助平台的介绍 1486950