🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情
亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Framework of Rehabilitation-assisted Robot Skill Representation, Learning, and Modulation via Manifold-Mappings and Gaussian Processes

歧管(流体力学) 机器人 人工智能 欧几里得空间 代表(政治) 职位(财务) 计算机科学 方向(向量空间) 高斯分布 计算机视觉 数学 纯数学 工程类 几何学 物理 机械工程 财务 量子力学 政治 法学 政治学 经济
作者
Hongmin Wu,Zhihao Xu,Yan Wu,Yangmin Ou,Zhao-Yang Liao,Xuefeng Zhou
标识
DOI:10.1109/iros47612.2022.9982172
摘要

Stroke survivors usually have dyskinesia, who have an urgent need for rehabilitation-assist training. To reduce the labor of rehabilitation therapists, this paper attempts to investigate an effective rehabilitation-assisted robot skill acquisition framework, which is inspired by the scheme of robot learning from demonstration (LfD). Since most of the current LfD methods were implemented with rigorous assumptions that the considering motion features are only represented on an individual manifold. Meanwhile, despite many advancements that have been achieved on time-position trajectories and position-velocity trajectories, those methods are restricted to Euclidean space and can not be applied to learn those dexterous and compliant rehabilitation-assisted robot skills such as position-orientation trajectories and force-stiffness trajectories, etc. In this paper, we propose a novel skill acquisition framework for rehabilitation-assisted robot using manifold-mappings and Gaussian processes, which allows the robot to 1) simultaneously considering the robot position, orientation, force as well as stiffness by manifold-mappings among d-dimensional Euclidean space $\mathcal{R}^{d}$ , special orthogonal group $S\mathcal{O}$ (3), and Riemannian space $\mathcal{M}$ , respectively, which resulting in accurate motion and compliant behavior; 2) retrieving skill representation by encap-sulating the variability of multiple high-dimensional demon-strations that with input-dependent noises; 3) implementing the via-points-based trajectory modulation by considering task constraints or environmental changes. To simplify the writing, we named the proposed framework as Multi-motion Features Fusion-based Robot Skill Learning (MF 2 RoSL). To effectively evaluate the effectiveness of our proposed method, an upper limb rehabilitation training system with a collaborative Kinova robot is developed. The training exercises of our system are determined according to the Brunnstrom therapeutic approach to the management of hemiplegic patients, including the 3-DoFs movement of the shoulder joint and a 7-DoF movement of an insertion/extraction task for assessing the activities of daily living (ADL). Results indicate that our proposed MF 2 RoSL method allows the robot to learn rehabilitation skills from the therapist and can be rapidly adapted to new patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楼北完成签到,获得积分10
9秒前
vicky完成签到,获得积分10
28秒前
陆黑暗完成签到 ,获得积分10
30秒前
1分钟前
1分钟前
1分钟前
ygl0217发布了新的文献求助10
1分钟前
涂山发布了新的文献求助10
1分钟前
1分钟前
ygl0217完成签到,获得积分10
1分钟前
隐形曼青应助Ffpcjwcx采纳,获得10
1分钟前
科研通AI5应助涂山采纳,获得10
1分钟前
懵懂的朋友完成签到,获得积分10
1分钟前
1分钟前
2分钟前
kokoko完成签到,获得积分10
2分钟前
Jiaowen完成签到,获得积分10
2分钟前
Ffpcjwcx发布了新的文献求助10
2分钟前
2分钟前
今后应助智多鑫采纳,获得10
2分钟前
逝水完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
智多鑫发布了新的文献求助10
3分钟前
Lucas应助花凉采纳,获得10
3分钟前
3分钟前
花凉发布了新的文献求助10
3分钟前
自由冰凡完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
善学以致用应助美好的邴采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科目三应助科研通管家采纳,获得10
4分钟前
vicky发布了新的文献求助50
5分钟前
智多鑫发布了新的文献求助10
5分钟前
5分钟前
5分钟前
小宝完成签到,获得积分10
5分钟前
英姑应助葡萄成熟时采纳,获得10
5分钟前
SL完成签到,获得积分10
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600411
求助须知:如何正确求助?哪些是违规求助? 3169262
关于积分的说明 9560717
捐赠科研通 2875637
什么是DOI,文献DOI怎么找? 1578976
邀请新用户注册赠送积分活动 742322
科研通“疑难数据库(出版商)”最低求助积分说明 725161