Modeling soot formation in flames and reactors: Recent progress and current challenges

烟灰 燃烧 炭黑 热解 碳纤维 甲烷 纳米技术 工艺工程 材料科学 化学 有机化学 工程类 复合数 复合材料 天然橡胶
作者
Murray J. Thomson
出处
期刊:Proceedings of the Combustion Institute [Elsevier]
卷期号:39 (1): 805-823 被引量:14
标识
DOI:10.1016/j.proci.2022.07.263
摘要

The study of soot has long been motivated by its adverse impacts on health and the environment. However, this combustion knowledge is also relevant to the production of carbon black and hydrogen via methane pyrolysis which are important commodities. Over the last decade, steady progress has been made in the development of detailed continuum models of soot formation in flames and reactors. Developing more comprehensive models has often been motivated by the need for predicting soot formation over a wider range of conditions (e.g., temperature, pressure, fuels). Measurements with novel experimental techniques have given us new insights into the chemistry, particle dynamics and optical properties of soot particles and even molecules and radicals forming them. Also, multi-scale modeling has enabled us to translate the detailed mechanisms of soot processes based on first principles into computationally efficient but accurate continuum models of soot formation in flames and reactors. However, important questions remain including (1) what is the mechanism of soot inception and surface growth, (2) which gas-phase species are involved in soot inception and surface growth (3) how surface growth and oxidation are affected by soot surface properties. Proposed models need to be evaluated against experimental data over a wide range of conditions to determine their predictive strength. These questions are critical for the accurate prediction of soot formation in flames and its emissions from engines. However, this knowledge can also be used to develop predictive process design and optimization tools for carbon black and other nanocarbon formation in reactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JWang完成签到,获得积分20
刚刚
1秒前
小橙子发布了新的文献求助30
1秒前
2秒前
科研通AI5应助zino采纳,获得10
2秒前
shepherd完成签到 ,获得积分10
2秒前
Brave_1完成签到 ,获得积分10
2秒前
8R60d8应助学术小黄采纳,获得10
3秒前
南宫萍完成签到,获得积分10
3秒前
3秒前
3秒前
小苔藓发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
快乐银耳汤应助FFF采纳,获得10
4秒前
shelly0621完成签到,获得积分10
4秒前
科研通AI5应助FFF采纳,获得10
4秒前
yyang完成签到,获得积分10
4秒前
穆思柔完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
脑洞疼应助Xu采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
Dddd发布了新的文献求助10
7秒前
xx完成签到,获得积分20
7秒前
BEIBEI完成签到,获得积分10
7秒前
liyi发布了新的文献求助10
7秒前
苗条的山晴完成签到,获得积分10
7秒前
8秒前
mm完成签到,获得积分10
9秒前
JUll发布了新的文献求助10
9秒前
无奈抽屉完成签到 ,获得积分10
9秒前
9秒前
10秒前
风中的夏兰完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678