亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine Learning Framework for Early-Stage Detection of Autism Spectrum Disorders

人工智能 自闭症谱系障碍 支持向量机 接收机工作特性 随机森林 机器学习 计算机科学 线性判别分析 朴素贝叶斯分类器 模式识别(心理学) 相关性 自闭症 数学 医学 几何学 精神科
作者
S. M. Mahedy Hasan,Md Palash Uddin,Md. Al Mamun,Muhammad Imran Sharif,Anwaar Ulhaq,Govind Krishnamoorthy
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 15038-15057 被引量:31
标识
DOI:10.1109/access.2022.3232490
摘要

Autism Spectrum Disorder (ASD) is a type of neurodevelopmental disorder that affects the everyday life of affected patients. Though it is considered hard to completely eradicate this disease, disease severity can be mitigated by taking early interventions. In this paper, we propose an effective framework for the evaluation of various Machine Learning (ML) techniques for the early detection of ASD. The proposed framework employs four different Feature Scaling (FS) strategies i.e., Quantile Transformer (QT), Power Transformer (PT), Normalizer, and Max Abs Scaler (MAS). Then, the feature-scaled datasets are classified through eight simple but effective ML algorithms like Ada Boost (AB), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KNN), Gaussian Naïve Bayes (GNB), Logistic Regression (LR), Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA). Our experiments are performed on four standard ASD datasets (Toddlers, Adolescents, Children, and Adults). Comparing the classification outcomes using various statistical evaluation measures (Accuracy, Receiver Operating Characteristic: ROC curve, F1-score, Precision, Recall, Mathews Correlation Coefficient: MCC, Kappa score, and Log loss), the best-performing classification methods, and the best FS techniques for each ASD dataset are identified. After analyzing the experimental outcomes of different classifiers on feature-scaled ASD datasets, it is found that AB predicted ASD with the highest accuracy of 99.25%, and 97.95% for Toddlers and Children, respectively and LDA predicted ASD with the highest accuracy of 97.12% and 99.03% for Adolescents and Adults datasets, respectively. These highest accuracies are achieved while scaling Toddlers and Children with normalizer FS and Adolescents and Adults with the QT FS method. Afterward, the ASD risk factors are calculated, and the most important attributes are ranked according to their importance values using four different Feature Selection Techniques (FSTs) i.e., Info Gain Attribute Evaluator (IGAE), Gain Ratio Attribute Evaluator (GRAE), Relief F Attribute Evaluator (RFAE), and Correlation Attribute Evaluator (CAE). These detailed experimental evaluations indicate that proper finetuning of the ML methods can play an essential role in predicting ASD in people of different ages. We argue that the detailed feature importance analysis in this paper will guide the decision-making of healthcare practitioners while screening ASD cases. The proposed framework has achieved promising results compared to existing approaches for the early detection of ASD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lztong完成签到,获得积分10
7秒前
不去明知山完成签到 ,获得积分10
16秒前
kk_1315完成签到,获得积分0
17秒前
天天快乐应助Gromit采纳,获得10
25秒前
熊猫之歌完成签到,获得积分10
31秒前
烟消云散完成签到,获得积分10
37秒前
fcc完成签到 ,获得积分10
42秒前
42秒前
秦梭璋完成签到 ,获得积分10
47秒前
52秒前
标致白晴发布了新的文献求助10
56秒前
笑笑完成签到 ,获得积分10
1分钟前
默笙完成签到 ,获得积分10
1分钟前
CipherSage应助科研通管家采纳,获得30
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
慕青应助周城采纳,获得20
1分钟前
虚拟的凡波完成签到,获得积分10
1分钟前
1分钟前
1分钟前
周城发布了新的文献求助20
1分钟前
2分钟前
2分钟前
2分钟前
Juniorrr发布了新的文献求助10
2分钟前
Gromit发布了新的文献求助10
2分钟前
科研通AI5应助断罪残影采纳,获得30
2分钟前
彭于晏应助体贴香岚采纳,获得10
2分钟前
2分钟前
在巨人的肩膀上眺望远方完成签到,获得积分10
2分钟前
拜拜完成签到,获得积分20
2分钟前
酷酷的半烟完成签到,获得积分10
2分钟前
拜拜发布了新的文献求助10
2分钟前
3分钟前
上官若男应助JcoZ采纳,获得10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198434
求助须知:如何正确求助?哪些是违规求助? 4379404
关于积分的说明 13638075
捐赠科研通 4235518
什么是DOI,文献DOI怎么找? 2323389
邀请新用户注册赠送积分活动 1321512
关于科研通互助平台的介绍 1272496