A Machine Learning Framework for Early-Stage Detection of Autism Spectrum Disorders

人工智能 自闭症谱系障碍 支持向量机 接收机工作特性 随机森林 机器学习 计算机科学 线性判别分析 朴素贝叶斯分类器 模式识别(心理学) 相关性 自闭症 数学 医学 几何学 精神科
作者
S. M. Mahedy Hasan,Md Palash Uddin,Md. Al Mamun,Muhammad Imran Sharif,Anwaar Ulhaq,Govind Krishnamoorthy
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 15038-15057 被引量:31
标识
DOI:10.1109/access.2022.3232490
摘要

Autism Spectrum Disorder (ASD) is a type of neurodevelopmental disorder that affects the everyday life of affected patients. Though it is considered hard to completely eradicate this disease, disease severity can be mitigated by taking early interventions. In this paper, we propose an effective framework for the evaluation of various Machine Learning (ML) techniques for the early detection of ASD. The proposed framework employs four different Feature Scaling (FS) strategies i.e., Quantile Transformer (QT), Power Transformer (PT), Normalizer, and Max Abs Scaler (MAS). Then, the feature-scaled datasets are classified through eight simple but effective ML algorithms like Ada Boost (AB), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KNN), Gaussian Naïve Bayes (GNB), Logistic Regression (LR), Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA). Our experiments are performed on four standard ASD datasets (Toddlers, Adolescents, Children, and Adults). Comparing the classification outcomes using various statistical evaluation measures (Accuracy, Receiver Operating Characteristic: ROC curve, F1-score, Precision, Recall, Mathews Correlation Coefficient: MCC, Kappa score, and Log loss), the best-performing classification methods, and the best FS techniques for each ASD dataset are identified. After analyzing the experimental outcomes of different classifiers on feature-scaled ASD datasets, it is found that AB predicted ASD with the highest accuracy of 99.25%, and 97.95% for Toddlers and Children, respectively and LDA predicted ASD with the highest accuracy of 97.12% and 99.03% for Adolescents and Adults datasets, respectively. These highest accuracies are achieved while scaling Toddlers and Children with normalizer FS and Adolescents and Adults with the QT FS method. Afterward, the ASD risk factors are calculated, and the most important attributes are ranked according to their importance values using four different Feature Selection Techniques (FSTs) i.e., Info Gain Attribute Evaluator (IGAE), Gain Ratio Attribute Evaluator (GRAE), Relief F Attribute Evaluator (RFAE), and Correlation Attribute Evaluator (CAE). These detailed experimental evaluations indicate that proper finetuning of the ML methods can play an essential role in predicting ASD in people of different ages. We argue that the detailed feature importance analysis in this paper will guide the decision-making of healthcare practitioners while screening ASD cases. The proposed framework has achieved promising results compared to existing approaches for the early detection of ASD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
型男完成签到,获得积分10
刚刚
xiaoxin发布了新的文献求助10
刚刚
kunkunna完成签到,获得积分10
2秒前
ZJX发布了新的文献求助10
2秒前
吃猫的鱼发布了新的文献求助10
2秒前
丁论文完成签到,获得积分10
2秒前
王不留行发布了新的文献求助10
2秒前
sunrase完成签到,获得积分10
2秒前
海盐驳回了OCDer应助
4秒前
慕青应助郭娅楠采纳,获得10
4秒前
5秒前
阿飞发布了新的文献求助10
5秒前
丁论文发布了新的文献求助10
5秒前
huajinoob发布了新的文献求助10
7秒前
LZHWSND完成签到,获得积分10
7秒前
8秒前
wu完成签到,获得积分10
10秒前
ZJX完成签到,获得积分20
11秒前
1874发布了新的文献求助10
12秒前
呃呃呃完成签到,获得积分20
14秒前
Owen应助李子好吃采纳,获得10
15秒前
15秒前
17秒前
李健的小迷弟应助四九采纳,获得30
17秒前
xumeo完成签到,获得积分10
17秒前
仁和远发布了新的文献求助10
18秒前
1874完成签到,获得积分10
18秒前
大力盼波完成签到,获得积分10
19秒前
19秒前
森林木完成签到,获得积分10
20秒前
20秒前
清新完成签到,获得积分10
22秒前
郭娅楠发布了新的文献求助10
22秒前
妮妮发布了新的文献求助10
23秒前
Pegasus发布了新的文献求助20
23秒前
不配.应助LGJ采纳,获得10
24秒前
25秒前
Ann完成签到 ,获得积分10
26秒前
Willer完成签到,获得积分10
27秒前
ruyi关注了科研通微信公众号
29秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271179
求助须知:如何正确求助?哪些是违规求助? 2910384
关于积分的说明 8354153
捐赠科研通 2580893
什么是DOI,文献DOI怎么找? 1403872
科研通“疑难数据库(出版商)”最低求助积分说明 656013
邀请新用户注册赠送积分活动 635418