Solving Multiobjective Feature Selection Problems in Classification via Problem Reformulation and Duplication Handling

特征选择 特征(语言学) 人工智能 早熟收敛 计算机科学 人口 特征向量 约束(计算机辅助设计) 趋同(经济学) 最优化问题 模式识别(心理学) 进化算法 多目标优化 机器学习 选择(遗传算法) 数据挖掘 数学优化 数学 粒子群优化 经济 人口学 社会学 哲学 经济增长 语言学 几何学
作者
Ruwang Jiao,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 846-860 被引量:30
标识
DOI:10.1109/tevc.2022.3215745
摘要

Reducing the number of selected features and improving the classification performance are two major objectives in feature selection, which can be viewed as a multi-objective optimization problem. Multi-objective feature selection in classification has its unique characteristics, such as it has a strong preference for the classification performance over the number of selected features. Besides, solution duplication often appears in both the search and the objective spaces, which degenerates the diversity and results in the premature convergence of the population. To deal with the above issues, in this paper, during the evolutionary training process, a multi-objective feature selection problem is reformulated and solved as a constrained multi-objective optimization problem, which adds a constraint on the classification performance for each solution (e.g., feature subset) according to the distribution of nondominated solutions, with the aim of selecting promising feature subsets that contain more informative and strongly relevant features, which are beneficial to improve the classification performance. Furthermore, based on the distribution of feature subsets in the objective space and their similarity in the search space, a duplication analysis and handling method is proposed to enhance the diversity of the population. Experimental results demonstrate that the proposed method outperforms six state-of-the-art algorithms and is computationally efficient on 18 classification datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
党柯完成签到,获得积分10
1秒前
刘思忆发布了新的文献求助10
1秒前
青石发布了新的文献求助10
2秒前
踏实的兔子完成签到 ,获得积分10
2秒前
wy发布了新的文献求助10
3秒前
顺心的羊完成签到,获得积分10
3秒前
明空完成签到,获得积分10
4秒前
wjwqz发布了新的文献求助10
4秒前
4秒前
4秒前
西凉河葛三叔完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Viva发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
Abdurrahman完成签到,获得积分10
6秒前
Lido完成签到,获得积分10
6秒前
小马甲应助nuth采纳,获得10
6秒前
7秒前
李健的小迷弟应助青石采纳,获得10
7秒前
拉拉发布了新的文献求助10
7秒前
Alger完成签到,获得积分10
8秒前
阿宁爱学习完成签到,获得积分10
8秒前
dai完成签到,获得积分10
9秒前
李萌发布了新的文献求助10
9秒前
铌123发布了新的文献求助10
9秒前
羡鱼发布了新的文献求助10
9秒前
闪闪跳跳糖完成签到,获得积分10
9秒前
9秒前
XL完成签到,获得积分10
9秒前
hxd_BIGpaperer完成签到,获得积分10
9秒前
研友_VZG7GZ应助哈哈哈采纳,获得10
9秒前
顺心的羊发布了新的文献求助10
10秒前
anliu发布了新的文献求助30
10秒前
JayZee发布了新的文献求助10
11秒前
科研通AI6应助晚若旧采纳,获得10
12秒前
小鱼完成签到,获得积分10
12秒前
小二郎应助wy采纳,获得10
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442393
求助须知:如何正确求助?哪些是违规求助? 4552598
关于积分的说明 14237646
捐赠科研通 4473916
什么是DOI,文献DOI怎么找? 2451715
邀请新用户注册赠送积分活动 1442571
关于科研通互助平台的介绍 1418541