Solving Multiobjective Feature Selection Problems in Classification via Problem Reformulation and Duplication Handling

特征选择 特征(语言学) 人工智能 早熟收敛 计算机科学 人口 特征向量 约束(计算机辅助设计) 趋同(经济学) 最优化问题 模式识别(心理学) 进化算法 多目标优化 机器学习 选择(遗传算法) 数据挖掘 数学优化 数学 粒子群优化 几何学 哲学 社会学 人口学 经济 经济增长 语言学
作者
Ruwang Jiao,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 846-860 被引量:30
标识
DOI:10.1109/tevc.2022.3215745
摘要

Reducing the number of selected features and improving the classification performance are two major objectives in feature selection, which can be viewed as a multi-objective optimization problem. Multi-objective feature selection in classification has its unique characteristics, such as it has a strong preference for the classification performance over the number of selected features. Besides, solution duplication often appears in both the search and the objective spaces, which degenerates the diversity and results in the premature convergence of the population. To deal with the above issues, in this paper, during the evolutionary training process, a multi-objective feature selection problem is reformulated and solved as a constrained multi-objective optimization problem, which adds a constraint on the classification performance for each solution (e.g., feature subset) according to the distribution of nondominated solutions, with the aim of selecting promising feature subsets that contain more informative and strongly relevant features, which are beneficial to improve the classification performance. Furthermore, based on the distribution of feature subsets in the objective space and their similarity in the search space, a duplication analysis and handling method is proposed to enhance the diversity of the population. Experimental results demonstrate that the proposed method outperforms six state-of-the-art algorithms and is computationally efficient on 18 classification datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的宝马完成签到,获得积分10
刚刚
idemipere完成签到,获得积分10
刚刚
李春生完成签到,获得积分10
1秒前
雨姐科研应助洁净雨采纳,获得10
1秒前
SciGPT应助能干蜜蜂采纳,获得10
1秒前
ASSA完成签到,获得积分10
1秒前
小任吃不胖完成签到,获得积分10
1秒前
临床耶耶发布了新的文献求助10
1秒前
2秒前
罗美女应助lalaland采纳,获得10
2秒前
Flynn完成签到 ,获得积分10
2秒前
Ava应助文艺的访曼采纳,获得10
3秒前
Nancy2023发布了新的文献求助10
3秒前
温暖的俊驰完成签到,获得积分10
3秒前
3秒前
铭铭完成签到 ,获得积分10
4秒前
IIIIIIIIIIIIII完成签到,获得积分10
4秒前
cuddly完成签到 ,获得积分10
4秒前
waynechang完成签到,获得积分10
4秒前
5秒前
子车茗应助zhaoyang采纳,获得30
5秒前
赘婿应助容二遥采纳,获得10
5秒前
5秒前
5秒前
泽丶完成签到,获得积分10
5秒前
高贵的悟空完成签到,获得积分10
6秒前
6秒前
cx完成签到,获得积分10
7秒前
平常的化蛹完成签到,获得积分10
7秒前
搜集达人应助dengdengdeng采纳,获得10
8秒前
bierbia完成签到,获得积分10
8秒前
十二月完成签到,获得积分10
8秒前
9秒前
啾啾完成签到,获得积分10
9秒前
yangya完成签到,获得积分10
9秒前
扣子完成签到 ,获得积分10
10秒前
罗美女应助元谷雪采纳,获得10
10秒前
1111完成签到,获得积分10
10秒前
KLAY完成签到,获得积分10
11秒前
一罐樱桃酱完成签到,获得积分10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698860
求助须知:如何正确求助?哪些是违规求助? 5127041
关于积分的说明 15222713
捐赠科研通 4853854
什么是DOI,文献DOI怎么找? 2604340
邀请新用户注册赠送积分活动 1555814
关于科研通互助平台的介绍 1514139