Solving Multiobjective Feature Selection Problems in Classification via Problem Reformulation and Duplication Handling

特征选择 特征(语言学) 人工智能 早熟收敛 计算机科学 人口 特征向量 约束(计算机辅助设计) 趋同(经济学) 最优化问题 模式识别(心理学) 进化算法 多目标优化 机器学习 选择(遗传算法) 数据挖掘 数学优化 数学 粒子群优化 几何学 哲学 社会学 人口学 经济 经济增长 语言学
作者
Ruwang Jiao,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 846-860 被引量:30
标识
DOI:10.1109/tevc.2022.3215745
摘要

Reducing the number of selected features and improving the classification performance are two major objectives in feature selection, which can be viewed as a multi-objective optimization problem. Multi-objective feature selection in classification has its unique characteristics, such as it has a strong preference for the classification performance over the number of selected features. Besides, solution duplication often appears in both the search and the objective spaces, which degenerates the diversity and results in the premature convergence of the population. To deal with the above issues, in this paper, during the evolutionary training process, a multi-objective feature selection problem is reformulated and solved as a constrained multi-objective optimization problem, which adds a constraint on the classification performance for each solution (e.g., feature subset) according to the distribution of nondominated solutions, with the aim of selecting promising feature subsets that contain more informative and strongly relevant features, which are beneficial to improve the classification performance. Furthermore, based on the distribution of feature subsets in the objective space and their similarity in the search space, a duplication analysis and handling method is proposed to enhance the diversity of the population. Experimental results demonstrate that the proposed method outperforms six state-of-the-art algorithms and is computationally efficient on 18 classification datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傅宛白发布了新的文献求助10
刚刚
Shark完成签到,获得积分20
刚刚
1秒前
1秒前
1秒前
爆米花应助myq采纳,获得10
2秒前
Jasper应助优雅的冷卉采纳,获得10
3秒前
3秒前
谢大喵发布了新的文献求助10
3秒前
斯文败类应助Zyxx采纳,获得10
3秒前
evelyn发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
罗柠七发布了新的文献求助20
4秒前
语物完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
领导范儿应助方旋采纳,获得10
5秒前
等待戈多完成签到,获得积分10
6秒前
6秒前
大头发布了新的文献求助20
7秒前
caigou完成签到,获得积分10
7秒前
ll发布了新的文献求助10
7秒前
Shark发布了新的文献求助10
8秒前
元谷雪发布了新的文献求助10
9秒前
9秒前
10秒前
金福珠发布了新的文献求助10
10秒前
qiii发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
Wind应助ichia采纳,获得10
12秒前
yu完成签到,获得积分20
12秒前
12秒前
赘婿应助饱满凡灵采纳,获得30
12秒前
李耀京完成签到,获得积分10
13秒前
14秒前
蚝油盗梨发布了新的文献求助10
14秒前
yu发布了新的文献求助10
15秒前
希望天下0贩的0应助coco采纳,获得10
16秒前
活泼红牛完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233