Solving Multiobjective Feature Selection Problems in Classification via Problem Reformulation and Duplication Handling

特征选择 特征(语言学) 人工智能 早熟收敛 计算机科学 人口 特征向量 约束(计算机辅助设计) 趋同(经济学) 最优化问题 模式识别(心理学) 进化算法 多目标优化 机器学习 选择(遗传算法) 数据挖掘 数学优化 数学 粒子群优化 几何学 哲学 社会学 人口学 经济 经济增长 语言学
作者
Ruwang Jiao,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 846-860 被引量:18
标识
DOI:10.1109/tevc.2022.3215745
摘要

Reducing the number of selected features and improving the classification performance are two major objectives in feature selection, which can be viewed as a multi-objective optimization problem. Multi-objective feature selection in classification has its unique characteristics, such as it has a strong preference for the classification performance over the number of selected features. Besides, solution duplication often appears in both the search and the objective spaces, which degenerates the diversity and results in the premature convergence of the population. To deal with the above issues, in this paper, during the evolutionary training process, a multi-objective feature selection problem is reformulated and solved as a constrained multi-objective optimization problem, which adds a constraint on the classification performance for each solution (e.g., feature subset) according to the distribution of nondominated solutions, with the aim of selecting promising feature subsets that contain more informative and strongly relevant features, which are beneficial to improve the classification performance. Furthermore, based on the distribution of feature subsets in the objective space and their similarity in the search space, a duplication analysis and handling method is proposed to enhance the diversity of the population. Experimental results demonstrate that the proposed method outperforms six state-of-the-art algorithms and is computationally efficient on 18 classification datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ycg发布了新的文献求助10
1秒前
ttt完成签到,获得积分10
1秒前
朱灭龙完成签到,获得积分10
3秒前
ZR发布了新的文献求助10
3秒前
研友_nqrKQZ发布了新的文献求助30
4秒前
5秒前
5秒前
蛋糕完成签到,获得积分10
7秒前
不配.应助zrw采纳,获得20
8秒前
852应助1872采纳,获得200
9秒前
Mauris发布了新的文献求助10
10秒前
Feny发布了新的文献求助10
11秒前
烟花应助shouying采纳,获得10
11秒前
冷酷觅荷完成签到,获得积分10
11秒前
12秒前
ygr应助Chen采纳,获得30
12秒前
12秒前
账户已注销应助化工波比采纳,获得30
12秒前
13秒前
13秒前
13秒前
万能图书馆应助小一采纳,获得20
14秒前
欣慰的盼芙完成签到 ,获得积分10
14秒前
14秒前
Candice完成签到,获得积分10
15秒前
1/2完成签到,获得积分10
16秒前
lifeboast发布了新的文献求助10
17秒前
17秒前
19秒前
19秒前
无私绿兰完成签到 ,获得积分10
20秒前
20秒前
long应助Guofenglei采纳,获得10
20秒前
苦哈哈发布了新的文献求助10
21秒前
点点白帆发布了新的文献求助10
21秒前
wz完成签到,获得积分10
21秒前
调研昵称发布了新的文献求助20
21秒前
Owen应助Feny采纳,获得10
21秒前
lh发布了新的文献求助10
21秒前
万能图书馆应助陈雪丽采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135577
求助须知:如何正确求助?哪些是违规求助? 2786454
关于积分的说明 7777484
捐赠科研通 2442441
什么是DOI,文献DOI怎么找? 1298558
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847