Solving Multiobjective Feature Selection Problems in Classification via Problem Reformulation and Duplication Handling

特征选择 特征(语言学) 人工智能 早熟收敛 计算机科学 人口 特征向量 约束(计算机辅助设计) 趋同(经济学) 最优化问题 模式识别(心理学) 进化算法 多目标优化 机器学习 选择(遗传算法) 数据挖掘 数学优化 数学 粒子群优化 经济 人口学 社会学 哲学 经济增长 语言学 几何学
作者
Ruwang Jiao,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 846-860 被引量:30
标识
DOI:10.1109/tevc.2022.3215745
摘要

Reducing the number of selected features and improving the classification performance are two major objectives in feature selection, which can be viewed as a multi-objective optimization problem. Multi-objective feature selection in classification has its unique characteristics, such as it has a strong preference for the classification performance over the number of selected features. Besides, solution duplication often appears in both the search and the objective spaces, which degenerates the diversity and results in the premature convergence of the population. To deal with the above issues, in this paper, during the evolutionary training process, a multi-objective feature selection problem is reformulated and solved as a constrained multi-objective optimization problem, which adds a constraint on the classification performance for each solution (e.g., feature subset) according to the distribution of nondominated solutions, with the aim of selecting promising feature subsets that contain more informative and strongly relevant features, which are beneficial to improve the classification performance. Furthermore, based on the distribution of feature subsets in the objective space and their similarity in the search space, a duplication analysis and handling method is proposed to enhance the diversity of the population. Experimental results demonstrate that the proposed method outperforms six state-of-the-art algorithms and is computationally efficient on 18 classification datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨胜菲发布了新的文献求助10
1秒前
2秒前
xz完成签到 ,获得积分10
3秒前
无私的砖头完成签到 ,获得积分10
4秒前
光影之主完成签到,获得积分10
4秒前
qiaokelidawang完成签到,获得积分10
4秒前
4秒前
6秒前
7秒前
7秒前
Aythunder发布了新的文献求助10
8秒前
Jiang发布了新的文献求助10
9秒前
13934532358发布了新的文献求助10
10秒前
小小孙完成签到,获得积分20
11秒前
14秒前
llb完成签到,获得积分10
14秒前
15秒前
读书人完成签到,获得积分10
16秒前
殷一丹完成签到 ,获得积分10
16秒前
悠悠应助顾太采纳,获得30
20秒前
量子星尘发布了新的文献求助10
20秒前
Iridescent发布了新的文献求助10
20秒前
SciGPT应助Atlantic采纳,获得10
21秒前
TGH完成签到,获得积分20
22秒前
英勇的沛春完成签到 ,获得积分10
22秒前
23秒前
酷波er应助Jiang采纳,获得10
24秒前
25秒前
刘方欣发布了新的文献求助10
25秒前
25秒前
充电宝应助甜甜雁荷采纳,获得10
25秒前
文静的绯完成签到,获得积分10
26秒前
万能图书馆应助心怡采纳,获得10
26秒前
123完成签到,获得积分10
28秒前
时尚煎蛋发布了新的文献求助10
29秒前
打打应助bingice7采纳,获得10
29秒前
高瑞发布了新的文献求助10
30秒前
31秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571782
求助须知:如何正确求助?哪些是违规求助? 4656973
关于积分的说明 14718528
捐赠科研通 4597827
什么是DOI,文献DOI怎么找? 2523367
邀请新用户注册赠送积分活动 1494222
关于科研通互助平台的介绍 1464312