SzHNN: A Novel and Scalable Deep Convolution Hybrid Neural Network Framework for Schizophrenia Detection Using Multichannel EEG

计算机科学 深度学习 人工智能 卷积神经网络 脑电图 特征提取 人工神经网络 模式识别(心理学) 可扩展性 机器学习 特征(语言学) 精神分裂症(面向对象编程) 心理学 数据库 程序设计语言 语言学 哲学 精神科
作者
Geetanjali Sharma,Amit M. Joshi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:17
标识
DOI:10.1109/tim.2022.3212040
摘要

In the field of neuroscience, brain activity measurement and analysis are considered crucial areas. Schizophrenia (Sz) is a brain disorder that severely affects the thinking, behavior, and feelings of people worldwide. Thus, an accurate and rapid detection method is needed for proper care and quality treatment of the patients. Electroencephalography (EEG) is proved to be an efficient biomarker in Sz detection as it records brain activities. This article aims to improve the performance of EEG-based Sz detection using a deep-learning approach in remote applications. A hybrid deep-learning model identified as schizophrenia hybrid neural network (SzHNN), which is a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM), has been proposed wherein the CNN for local feature extraction and LSTM for classification is utilized. In this article, the proposed model has been compared with several deep-learning and machine-learning-based models. All the models have been evaluated on two different datasets wherein dataset 1 consists of 19 subjects and dataset 2 consists of 16 subjects. The proposed model is also implemented with the Internet-of-Medical-Things (IoMT) framework for smart healthcare and remote-based applications. Several experiments have been conducted using various parametric settings on different frequency bands and different sets of electrodes on the scalp. Based on all the experiments, it is evident that the proposed hybrid model (SzHNN) provides the highest classification accuracy of 99.9% compared to other implemented models and existing models of previous papers. The proposed model overcomes the influence of different frequency bands and shows a better accuracy of 96.10% (dataset 1) and 91.00% (dataset 2) with only five electrodes. Subject-wise testing is also done for SzHNN, which proposes an accuracy of 90.11% and 89.60% for datasets 1 and 2, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GEN完成签到,获得积分20
刚刚
刚刚
iiing完成签到,获得积分10
刚刚
刚刚
重要的板凳完成签到,获得积分10
刚刚
Venus完成签到,获得积分10
刚刚
田様应助吹风机采纳,获得10
刚刚
自然的霸完成签到,获得积分10
1秒前
深情安青应助珊珊采纳,获得10
1秒前
壮观的夏蓉完成签到,获得积分0
1秒前
机灵似狮发布了新的文献求助10
1秒前
云深不知处完成签到,获得积分10
2秒前
康丽完成签到,获得积分10
2秒前
4秒前
橘酥酥呀完成签到,获得积分20
4秒前
4秒前
Ava应助微眠采纳,获得10
4秒前
向浩完成签到,获得积分10
4秒前
英姑应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
CCY完成签到,获得积分10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
long应助科研通管家采纳,获得10
6秒前
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
Wind应助小鲤鱼采纳,获得20
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
Lyg发布了新的文献求助10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
淡定从凝完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
wnche完成签到,获得积分10
7秒前
月光族完成签到,获得积分10
7秒前
小小完成签到,获得积分20
7秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167