已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SzHNN: A Novel and Scalable Deep Convolution Hybrid Neural Network Framework for Schizophrenia Detection Using Multichannel EEG

计算机科学 深度学习 人工智能 卷积神经网络 脑电图 特征提取 人工神经网络 模式识别(心理学) 可扩展性 机器学习 特征(语言学) 精神分裂症(面向对象编程) 心理学 数据库 程序设计语言 语言学 哲学 精神科
作者
Geetanjali Sharma,Amit M. Joshi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:17
标识
DOI:10.1109/tim.2022.3212040
摘要

In the field of neuroscience, brain activity measurement and analysis are considered crucial areas. Schizophrenia (Sz) is a brain disorder that severely affects the thinking, behavior, and feelings of people worldwide. Thus, an accurate and rapid detection method is needed for proper care and quality treatment of the patients. Electroencephalography (EEG) is proved to be an efficient biomarker in Sz detection as it records brain activities. This article aims to improve the performance of EEG-based Sz detection using a deep-learning approach in remote applications. A hybrid deep-learning model identified as schizophrenia hybrid neural network (SzHNN), which is a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM), has been proposed wherein the CNN for local feature extraction and LSTM for classification is utilized. In this article, the proposed model has been compared with several deep-learning and machine-learning-based models. All the models have been evaluated on two different datasets wherein dataset 1 consists of 19 subjects and dataset 2 consists of 16 subjects. The proposed model is also implemented with the Internet-of-Medical-Things (IoMT) framework for smart healthcare and remote-based applications. Several experiments have been conducted using various parametric settings on different frequency bands and different sets of electrodes on the scalp. Based on all the experiments, it is evident that the proposed hybrid model (SzHNN) provides the highest classification accuracy of 99.9% compared to other implemented models and existing models of previous papers. The proposed model overcomes the influence of different frequency bands and shows a better accuracy of 96.10% (dataset 1) and 91.00% (dataset 2) with only five electrodes. Subject-wise testing is also done for SzHNN, which proposes an accuracy of 90.11% and 89.60% for datasets 1 and 2, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风信子deon01完成签到,获得积分10
1秒前
整齐泥猴桃完成签到 ,获得积分10
1秒前
2秒前
郗妫完成签到,获得积分10
2秒前
四月完成签到,获得积分10
2秒前
执念完成签到 ,获得积分10
3秒前
空空糯米团完成签到 ,获得积分10
4秒前
研友_ZrllXL发布了新的文献求助10
6秒前
6秒前
奥特超曼完成签到,获得积分10
6秒前
矮小的睫毛完成签到,获得积分10
7秒前
失眠的怀柔完成签到 ,获得积分10
7秒前
liyun发布了新的文献求助10
8秒前
8秒前
七七七呀完成签到 ,获得积分10
10秒前
xsx完成签到,获得积分10
10秒前
严明完成签到,获得积分10
12秒前
严明完成签到,获得积分10
12秒前
阿俊完成签到 ,获得积分10
13秒前
Gg发布了新的文献求助10
13秒前
本人完成签到 ,获得积分10
14秒前
14秒前
Jeremy完成签到 ,获得积分10
15秒前
包容东蒽完成签到 ,获得积分10
15秒前
耶格尔完成签到 ,获得积分10
16秒前
科研通AI2S应助pct采纳,获得10
17秒前
Ashley完成签到 ,获得积分10
17秒前
深情安青应助liyun采纳,获得10
19秒前
英姑应助搞学术太难了采纳,获得10
19秒前
XudongHou发布了新的文献求助10
19秒前
杳鸢应助科研通管家采纳,获得30
20秒前
orixero应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
杳鸢应助科研通管家采纳,获得50
20秒前
所所应助科研通管家采纳,获得10
20秒前
21秒前
21秒前
22秒前
千寻完成签到,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314289
求助须知:如何正确求助?哪些是违规求助? 2946571
关于积分的说明 8530830
捐赠科研通 2622299
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838