SzHNN: A Novel and Scalable Deep Convolution Hybrid Neural Network Framework for Schizophrenia Detection Using Multichannel EEG

计算机科学 深度学习 人工智能 卷积神经网络 脑电图 特征提取 人工神经网络 模式识别(心理学) 可扩展性 机器学习 特征(语言学) 精神分裂症(面向对象编程) 哲学 精神科 程序设计语言 数据库 语言学 心理学
作者
Geetanjali Sharma,Amit M. Joshi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:17
标识
DOI:10.1109/tim.2022.3212040
摘要

In the field of neuroscience, brain activity measurement and analysis are considered crucial areas. Schizophrenia (Sz) is a brain disorder that severely affects the thinking, behavior, and feelings of people worldwide. Thus, an accurate and rapid detection method is needed for proper care and quality treatment of the patients. Electroencephalography (EEG) is proved to be an efficient biomarker in Sz detection as it records brain activities. This article aims to improve the performance of EEG-based Sz detection using a deep-learning approach in remote applications. A hybrid deep-learning model identified as schizophrenia hybrid neural network (SzHNN), which is a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM), has been proposed wherein the CNN for local feature extraction and LSTM for classification is utilized. In this article, the proposed model has been compared with several deep-learning and machine-learning-based models. All the models have been evaluated on two different datasets wherein dataset 1 consists of 19 subjects and dataset 2 consists of 16 subjects. The proposed model is also implemented with the Internet-of-Medical-Things (IoMT) framework for smart healthcare and remote-based applications. Several experiments have been conducted using various parametric settings on different frequency bands and different sets of electrodes on the scalp. Based on all the experiments, it is evident that the proposed hybrid model (SzHNN) provides the highest classification accuracy of 99.9% compared to other implemented models and existing models of previous papers. The proposed model overcomes the influence of different frequency bands and shows a better accuracy of 96.10% (dataset 1) and 91.00% (dataset 2) with only five electrodes. Subject-wise testing is also done for SzHNN, which proposes an accuracy of 90.11% and 89.60% for datasets 1 and 2, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安之完成签到,获得积分10
1秒前
杆杆完成签到 ,获得积分10
1秒前
潇洒的蝴蝶完成签到,获得积分10
3秒前
暖羊羊Y完成签到 ,获得积分10
4秒前
活力书包完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
QAQSS完成签到 ,获得积分10
6秒前
偶做前堂客完成签到 ,获得积分10
9秒前
静静完成签到 ,获得积分10
10秒前
紫婧完成签到,获得积分10
10秒前
BowieHuang应助活力书包采纳,获得10
10秒前
wang完成签到,获得积分10
12秒前
2010完成签到,获得积分10
13秒前
无脚鸟完成签到,获得积分10
13秒前
14秒前
英姑应助Lumos采纳,获得10
14秒前
terryok完成签到 ,获得积分10
17秒前
von完成签到,获得积分10
18秒前
历史真相完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
机灵的安南完成签到 ,获得积分10
22秒前
SY15732023811完成签到 ,获得积分10
23秒前
梅特卡夫完成签到,获得积分10
24秒前
燕燕完成签到,获得积分10
26秒前
酷炫书芹完成签到 ,获得积分10
27秒前
不扯先生完成签到,获得积分10
27秒前
28秒前
28秒前
wbb完成签到 ,获得积分10
28秒前
嘻嗷完成签到,获得积分10
28秒前
29秒前
量子星尘发布了新的文献求助10
32秒前
Gloria完成签到 ,获得积分10
33秒前
yyy完成签到 ,获得积分10
34秒前
35秒前
碗在水中央完成签到 ,获得积分10
35秒前
争气完成签到 ,获得积分10
37秒前
Xiaoyisheng完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
40秒前
希达通完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773428
求助须知:如何正确求助?哪些是违规求助? 5611061
关于积分的说明 15431143
捐赠科研通 4905922
什么是DOI,文献DOI怎么找? 2639929
邀请新用户注册赠送积分活动 1587829
关于科研通互助平台的介绍 1542833