SzHNN: A Novel and Scalable Deep Convolution Hybrid Neural Network Framework for Schizophrenia Detection Using Multichannel EEG

计算机科学 深度学习 人工智能 卷积神经网络 脑电图 特征提取 人工神经网络 模式识别(心理学) 可扩展性 机器学习 特征(语言学) 精神分裂症(面向对象编程) 心理学 数据库 程序设计语言 语言学 哲学 精神科
作者
Geetanjali Sharma,Amit M. Joshi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:17
标识
DOI:10.1109/tim.2022.3212040
摘要

In the field of neuroscience, brain activity measurement and analysis are considered crucial areas. Schizophrenia (Sz) is a brain disorder that severely affects the thinking, behavior, and feelings of people worldwide. Thus, an accurate and rapid detection method is needed for proper care and quality treatment of the patients. Electroencephalography (EEG) is proved to be an efficient biomarker in Sz detection as it records brain activities. This article aims to improve the performance of EEG-based Sz detection using a deep-learning approach in remote applications. A hybrid deep-learning model identified as schizophrenia hybrid neural network (SzHNN), which is a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM), has been proposed wherein the CNN for local feature extraction and LSTM for classification is utilized. In this article, the proposed model has been compared with several deep-learning and machine-learning-based models. All the models have been evaluated on two different datasets wherein dataset 1 consists of 19 subjects and dataset 2 consists of 16 subjects. The proposed model is also implemented with the Internet-of-Medical-Things (IoMT) framework for smart healthcare and remote-based applications. Several experiments have been conducted using various parametric settings on different frequency bands and different sets of electrodes on the scalp. Based on all the experiments, it is evident that the proposed hybrid model (SzHNN) provides the highest classification accuracy of 99.9% compared to other implemented models and existing models of previous papers. The proposed model overcomes the influence of different frequency bands and shows a better accuracy of 96.10% (dataset 1) and 91.00% (dataset 2) with only five electrodes. Subject-wise testing is also done for SzHNN, which proposes an accuracy of 90.11% and 89.60% for datasets 1 and 2, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧小霜应助科研通管家采纳,获得30
刚刚
sxr完成签到,获得积分10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
上官若男应助我迷了鹿采纳,获得10
1秒前
1秒前
英俊的铭应助cute666采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得20
1秒前
ding应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
yz123完成签到,获得积分20
1秒前
上官若男应助纸质超人采纳,获得10
2秒前
盛景洲完成签到,获得积分20
2秒前
山山而川发布了新的文献求助10
2秒前
所所应助SY采纳,获得10
2秒前
xiaodong完成签到,获得积分10
2秒前
面缺陷发布了新的文献求助10
3秒前
Gotyababy发布了新的文献求助10
3秒前
安静海云发布了新的文献求助10
4秒前
孔雀翎完成签到,获得积分10
5秒前
柳劲南完成签到,获得积分10
5秒前
5秒前
打打应助zy采纳,获得10
5秒前
6秒前
7秒前
yck1027发布了新的文献求助10
7秒前
7秒前
善学以致用应助Blank采纳,获得10
7秒前
7秒前
科研通AI6应助Dd采纳,获得10
7秒前
白云完成签到,获得积分10
7秒前
7秒前
8秒前
SciGPT应助乌冬面采纳,获得10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646