SzHNN: A Novel and Scalable Deep Convolution Hybrid Neural Network Framework for Schizophrenia Detection Using Multichannel EEG

计算机科学 深度学习 人工智能 卷积神经网络 脑电图 特征提取 人工神经网络 模式识别(心理学) 可扩展性 机器学习 特征(语言学) 精神分裂症(面向对象编程) 哲学 精神科 程序设计语言 数据库 语言学 心理学
作者
Geetanjali Sharma,Amit M. Joshi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:17
标识
DOI:10.1109/tim.2022.3212040
摘要

In the field of neuroscience, brain activity measurement and analysis are considered crucial areas. Schizophrenia (Sz) is a brain disorder that severely affects the thinking, behavior, and feelings of people worldwide. Thus, an accurate and rapid detection method is needed for proper care and quality treatment of the patients. Electroencephalography (EEG) is proved to be an efficient biomarker in Sz detection as it records brain activities. This article aims to improve the performance of EEG-based Sz detection using a deep-learning approach in remote applications. A hybrid deep-learning model identified as schizophrenia hybrid neural network (SzHNN), which is a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM), has been proposed wherein the CNN for local feature extraction and LSTM for classification is utilized. In this article, the proposed model has been compared with several deep-learning and machine-learning-based models. All the models have been evaluated on two different datasets wherein dataset 1 consists of 19 subjects and dataset 2 consists of 16 subjects. The proposed model is also implemented with the Internet-of-Medical-Things (IoMT) framework for smart healthcare and remote-based applications. Several experiments have been conducted using various parametric settings on different frequency bands and different sets of electrodes on the scalp. Based on all the experiments, it is evident that the proposed hybrid model (SzHNN) provides the highest classification accuracy of 99.9% compared to other implemented models and existing models of previous papers. The proposed model overcomes the influence of different frequency bands and shows a better accuracy of 96.10% (dataset 1) and 91.00% (dataset 2) with only five electrodes. Subject-wise testing is also done for SzHNN, which proposes an accuracy of 90.11% and 89.60% for datasets 1 and 2, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miaopan完成签到,获得积分10
1秒前
传奇3应助li采纳,获得10
1秒前
小马甲应助俊逸的盛男采纳,获得10
1秒前
领导范儿应助睡个大觉采纳,获得20
1秒前
3秒前
华仔应助WANDour采纳,获得10
3秒前
ssj发布了新的文献求助10
3秒前
7秒前
Bin完成签到,获得积分10
7秒前
隐形的大有完成签到,获得积分10
7秒前
Kessen完成签到,获得积分10
8秒前
共享精神应助微笑的芯采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
星辰大海应助追寻夜安采纳,获得10
12秒前
12秒前
我最棒发布了新的文献求助10
13秒前
13秒前
eric888应助ZhiningZ采纳,获得100
13秒前
zaozao完成签到 ,获得积分10
13秒前
17秒前
君君发布了新的文献求助10
18秒前
li发布了新的文献求助10
18秒前
19秒前
22秒前
LPL发布了新的文献求助10
22秒前
22秒前
科研通AI6应助lll采纳,获得10
22秒前
22秒前
摸鱼王完成签到,获得积分10
23秒前
23秒前
香蕉诗蕊应助舒适的黑裤采纳,获得10
24秒前
25秒前
sophia发布了新的文献求助10
25秒前
25秒前
yangz10完成签到 ,获得积分10
26秒前
军军问问张完成签到,获得积分10
27秒前
28秒前
1553612461发布了新的文献求助10
30秒前
31秒前
hahah完成签到,获得积分20
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578711
求助须知:如何正确求助?哪些是违规求助? 4663506
关于积分的说明 14746896
捐赠科研通 4604465
什么是DOI,文献DOI怎么找? 2526940
邀请新用户注册赠送积分活动 1496536
关于科研通互助平台的介绍 1465830