亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SzHNN: A Novel and Scalable Deep Convolution Hybrid Neural Network Framework for Schizophrenia Detection Using Multichannel EEG

计算机科学 深度学习 人工智能 卷积神经网络 脑电图 特征提取 人工神经网络 模式识别(心理学) 可扩展性 机器学习 特征(语言学) 精神分裂症(面向对象编程) 哲学 精神科 程序设计语言 数据库 语言学 心理学
作者
Geetanjali Sharma,Amit M. Joshi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:17
标识
DOI:10.1109/tim.2022.3212040
摘要

In the field of neuroscience, brain activity measurement and analysis are considered crucial areas. Schizophrenia (Sz) is a brain disorder that severely affects the thinking, behavior, and feelings of people worldwide. Thus, an accurate and rapid detection method is needed for proper care and quality treatment of the patients. Electroencephalography (EEG) is proved to be an efficient biomarker in Sz detection as it records brain activities. This article aims to improve the performance of EEG-based Sz detection using a deep-learning approach in remote applications. A hybrid deep-learning model identified as schizophrenia hybrid neural network (SzHNN), which is a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM), has been proposed wherein the CNN for local feature extraction and LSTM for classification is utilized. In this article, the proposed model has been compared with several deep-learning and machine-learning-based models. All the models have been evaluated on two different datasets wherein dataset 1 consists of 19 subjects and dataset 2 consists of 16 subjects. The proposed model is also implemented with the Internet-of-Medical-Things (IoMT) framework for smart healthcare and remote-based applications. Several experiments have been conducted using various parametric settings on different frequency bands and different sets of electrodes on the scalp. Based on all the experiments, it is evident that the proposed hybrid model (SzHNN) provides the highest classification accuracy of 99.9% compared to other implemented models and existing models of previous papers. The proposed model overcomes the influence of different frequency bands and shows a better accuracy of 96.10% (dataset 1) and 91.00% (dataset 2) with only five electrodes. Subject-wise testing is also done for SzHNN, which proposes an accuracy of 90.11% and 89.60% for datasets 1 and 2, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
采薇发布了新的文献求助10
4秒前
yuan完成签到,获得积分10
26秒前
小蘑菇应助jing采纳,获得10
31秒前
搜集达人应助Luke采纳,获得10
34秒前
39秒前
41秒前
jing发布了新的文献求助10
46秒前
Demi_Ming完成签到,获得积分10
50秒前
程小柒完成签到 ,获得积分10
55秒前
Demi_Ming关注了科研通微信公众号
57秒前
烟花应助科研通管家采纳,获得10
1分钟前
坚强的秋白完成签到,获得积分10
2分钟前
xiawanren00完成签到,获得积分10
2分钟前
2分钟前
采薇发布了新的文献求助10
2分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
无极微光应助科研通管家采纳,获得20
3分钟前
任性云朵完成签到 ,获得积分10
3分钟前
大模型应助jing采纳,获得10
4分钟前
4分钟前
奋斗一刀完成签到,获得积分20
4分钟前
4分钟前
4分钟前
jing发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
火星上的幻梦完成签到,获得积分10
4分钟前
zyjsunye完成签到 ,获得积分10
4分钟前
一一完成签到,获得积分10
5分钟前
jing完成签到,获得积分20
5分钟前
充电宝应助科研通管家采纳,获得10
5分钟前
星辰大海应助科研通管家采纳,获得10
5分钟前
诚心雪晴完成签到 ,获得积分10
5分钟前
Owen应助Re采纳,获得10
5分钟前
6分钟前
Re发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
su完成签到 ,获得积分10
7分钟前
阿里完成签到,获得积分10
7分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644822
求助须知:如何正确求助?哪些是违规求助? 4765845
关于积分的说明 15025703
捐赠科研通 4803160
什么是DOI,文献DOI怎么找? 2568064
邀请新用户注册赠送积分活动 1525521
关于科研通互助平台的介绍 1485064