已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SzHNN: A Novel and Scalable Deep Convolution Hybrid Neural Network Framework for Schizophrenia Detection Using Multichannel EEG

计算机科学 深度学习 人工智能 卷积神经网络 脑电图 特征提取 人工神经网络 模式识别(心理学) 可扩展性 机器学习 特征(语言学) 精神分裂症(面向对象编程) 哲学 精神科 程序设计语言 数据库 语言学 心理学
作者
Geetanjali Sharma,Amit M. Joshi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:17
标识
DOI:10.1109/tim.2022.3212040
摘要

In the field of neuroscience, brain activity measurement and analysis are considered crucial areas. Schizophrenia (Sz) is a brain disorder that severely affects the thinking, behavior, and feelings of people worldwide. Thus, an accurate and rapid detection method is needed for proper care and quality treatment of the patients. Electroencephalography (EEG) is proved to be an efficient biomarker in Sz detection as it records brain activities. This article aims to improve the performance of EEG-based Sz detection using a deep-learning approach in remote applications. A hybrid deep-learning model identified as schizophrenia hybrid neural network (SzHNN), which is a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM), has been proposed wherein the CNN for local feature extraction and LSTM for classification is utilized. In this article, the proposed model has been compared with several deep-learning and machine-learning-based models. All the models have been evaluated on two different datasets wherein dataset 1 consists of 19 subjects and dataset 2 consists of 16 subjects. The proposed model is also implemented with the Internet-of-Medical-Things (IoMT) framework for smart healthcare and remote-based applications. Several experiments have been conducted using various parametric settings on different frequency bands and different sets of electrodes on the scalp. Based on all the experiments, it is evident that the proposed hybrid model (SzHNN) provides the highest classification accuracy of 99.9% compared to other implemented models and existing models of previous papers. The proposed model overcomes the influence of different frequency bands and shows a better accuracy of 96.10% (dataset 1) and 91.00% (dataset 2) with only five electrodes. Subject-wise testing is also done for SzHNN, which proposes an accuracy of 90.11% and 89.60% for datasets 1 and 2, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liss完成签到 ,获得积分10
1秒前
十三完成签到 ,获得积分10
1秒前
faaami应助张志超采纳,获得10
2秒前
深情安青应助Stroeve采纳,获得10
3秒前
zhou完成签到,获得积分10
3秒前
yjj发布了新的文献求助10
4秒前
5秒前
汤姆发布了新的文献求助10
6秒前
卿霜完成签到 ,获得积分10
8秒前
小豆芽完成签到,获得积分10
8秒前
华仔应助11_aa采纳,获得10
8秒前
L_93发布了新的文献求助10
8秒前
舒适鸡翅发布了新的文献求助10
9秒前
9秒前
Charlie完成签到 ,获得积分10
10秒前
jiwoong发布了新的文献求助10
10秒前
13秒前
14秒前
Kyrie完成签到 ,获得积分10
15秒前
16秒前
独特广山应助DS采纳,获得10
16秒前
李健的小迷弟应助Azhe采纳,获得10
19秒前
Mic应助和谐以冬采纳,获得10
21秒前
自信萃完成签到 ,获得积分10
21秒前
Stroeve发布了新的文献求助10
22秒前
叮叮完成签到 ,获得积分10
22秒前
22秒前
22秒前
23秒前
23秒前
彳亍完成签到,获得积分10
26秒前
11_aa发布了新的文献求助10
26秒前
26秒前
花花完成签到 ,获得积分10
27秒前
我是張寜啊完成签到 ,获得积分10
27秒前
易如反掌发布了新的文献求助10
27秒前
在水一方应助舒适鸡翅采纳,获得10
27秒前
29秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567958
求助须知:如何正确求助?哪些是违规求助? 4652476
关于积分的说明 14701138
捐赠科研通 4594306
什么是DOI,文献DOI怎么找? 2520819
邀请新用户注册赠送积分活动 1492790
关于科研通互助平台的介绍 1463645