SzHNN: A Novel and Scalable Deep Convolution Hybrid Neural Network Framework for Schizophrenia Detection Using Multichannel EEG

计算机科学 深度学习 人工智能 卷积神经网络 脑电图 特征提取 人工神经网络 模式识别(心理学) 可扩展性 机器学习 特征(语言学) 精神分裂症(面向对象编程) 哲学 精神科 程序设计语言 数据库 语言学 心理学
作者
Geetanjali Sharma,Amit M. Joshi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:17
标识
DOI:10.1109/tim.2022.3212040
摘要

In the field of neuroscience, brain activity measurement and analysis are considered crucial areas. Schizophrenia (Sz) is a brain disorder that severely affects the thinking, behavior, and feelings of people worldwide. Thus, an accurate and rapid detection method is needed for proper care and quality treatment of the patients. Electroencephalography (EEG) is proved to be an efficient biomarker in Sz detection as it records brain activities. This article aims to improve the performance of EEG-based Sz detection using a deep-learning approach in remote applications. A hybrid deep-learning model identified as schizophrenia hybrid neural network (SzHNN), which is a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM), has been proposed wherein the CNN for local feature extraction and LSTM for classification is utilized. In this article, the proposed model has been compared with several deep-learning and machine-learning-based models. All the models have been evaluated on two different datasets wherein dataset 1 consists of 19 subjects and dataset 2 consists of 16 subjects. The proposed model is also implemented with the Internet-of-Medical-Things (IoMT) framework for smart healthcare and remote-based applications. Several experiments have been conducted using various parametric settings on different frequency bands and different sets of electrodes on the scalp. Based on all the experiments, it is evident that the proposed hybrid model (SzHNN) provides the highest classification accuracy of 99.9% compared to other implemented models and existing models of previous papers. The proposed model overcomes the influence of different frequency bands and shows a better accuracy of 96.10% (dataset 1) and 91.00% (dataset 2) with only five electrodes. Subject-wise testing is also done for SzHNN, which proposes an accuracy of 90.11% and 89.60% for datasets 1 and 2, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nancy完成签到,获得积分20
刚刚
愉快的莹发布了新的文献求助10
刚刚
wzx发布了新的文献求助10
刚刚
刚刚
dududu发布了新的文献求助10
1秒前
lingling完成签到,获得积分20
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
天天快乐应助newRamir采纳,获得10
1秒前
罗胖胖完成签到 ,获得积分10
2秒前
细腻灵发布了新的文献求助10
2秒前
memorise完成签到,获得积分10
2秒前
3秒前
3秒前
容二遥完成签到,获得积分20
3秒前
自信河马发布了新的文献求助10
3秒前
歪歪发布了新的文献求助10
4秒前
英姑应助云止采纳,获得10
4秒前
这个人巨爱学习完成签到,获得积分10
5秒前
FashionBoy应助llj采纳,获得10
5秒前
5秒前
容二遥发布了新的文献求助10
6秒前
大模型应助方方方方方采纳,获得10
6秒前
6秒前
wwwewqe完成签到 ,获得积分20
6秒前
regene完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
向阳发布了新的文献求助10
7秒前
jisean完成签到,获得积分10
7秒前
zzz关闭了zzz文献求助
9秒前
所所应助科研大捞采纳,获得10
9秒前
自信河马完成签到,获得积分10
10秒前
rqtq2完成签到,获得积分10
10秒前
10秒前
柏果完成签到,获得积分10
11秒前
浅蓝完成签到 ,获得积分10
11秒前
淮竹发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785