NormToRaw: A Style Transfer Based Self-supervised Learning Approach for Nuclei Segmentation

分割 人工智能 计算机科学 学习迁移 模式识别(心理学) 图像分割 图像(数学) 深度学习 计算机视觉
作者
Xianlai Chen,Xuantong Zhong,Taixiang Li,Ying An,Long Mo
标识
DOI:10.1109/ijcnn55064.2022.9892957
摘要

Nuclei segmentation is valuable in histopathological image analysis, but labeling nuclei is costly. Different organs, pa-tients and diseases will lead to high variability in the morphology of nuclei, the structure of tissues, etc., which is difficult to elim-inate. Inconsistent staining operations and scanning operations will cause variability in histopathological image style. Relying on a small amount of labeled data, it is hard for the model to adapt to the high variability among histopathological images. Therefore, it is necessary to exploit the value in the massive unlabeled data. However, because the existing pretext tasks in self-supervised learning do not well consider the characteristics of histopathological images and segmentation task, the same for the existing data augmentation approaches in contrastive learning, they are not suitable for nuclei segmentation. In this paper, the proposed method, named NormToRaw, takes into consideration the characteristics of nuclei segmentation, which can learn semantic information from different stains by style transfer. A generative adversarial network is used to transfer the normalized image to the raw image. Pre-trained on more than 8,000 unlabeled images and trained on 16 labeled images, the experimental results of 5 pre-trained models showed that the proposed method is effective for improving the performance of nuclei segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿豪完成签到,获得积分10
刚刚
刚刚
Aoch发布了新的文献求助10
刚刚
高兴的初夏关注了科研通微信公众号
刚刚
shin发布了新的文献求助10
1秒前
zyl发布了新的文献求助10
1秒前
墨兮发布了新的文献求助10
1秒前
1秒前
Akim应助小六九采纳,获得10
1秒前
3秒前
年轻的翠发布了新的文献求助10
3秒前
3秒前
迷人的长颈鹿应助栗子采纳,获得10
3秒前
梦将军发布了新的文献求助10
3秒前
BareBear应助sz采纳,获得10
3秒前
4秒前
胖飞飞完成签到,获得积分10
4秒前
4秒前
NexusExplorer应助赤壁采纳,获得10
4秒前
嘿嘿应助季博常采纳,获得10
4秒前
羊寄灵发布了新的文献求助10
5秒前
JamesPei应助邹醉蓝采纳,获得10
6秒前
CodeCraft应助MINGMING采纳,获得10
7秒前
Ly完成签到 ,获得积分10
7秒前
万能图书馆应助huangpeihao采纳,获得10
7秒前
秀丽的大门完成签到,获得积分10
7秒前
木尧发布了新的文献求助10
8秒前
海岸发布了新的文献求助10
8秒前
8秒前
甜甜夏青发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Lontano完成签到,获得积分10
9秒前
9秒前
一鸣大人完成签到,获得积分10
10秒前
懒得理完成签到 ,获得积分10
11秒前
可乐发布了新的文献求助10
11秒前
小陈发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552039
求助须知:如何正确求助?哪些是违规求助? 4636877
关于积分的说明 14646248
捐赠科研通 4578705
什么是DOI,文献DOI怎么找? 2511074
邀请新用户注册赠送积分活动 1486286
关于科研通互助平台的介绍 1457502