电解质
阴极
材料科学
氧化还原
电容
电化学
超级电容器
离子
化学工程
电极
化学
工程类
物理化学
有机化学
冶金
作者
Weijia Liu,La Li,Guozhen Shen
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2022-12-21
卷期号:15 (6): 2624-2632
被引量:16
摘要
Frequently used aqueous electrolytes in MXene-based Zn-ion hybrid microsupercapacitors (MSCs) limit their cycling and rate stability. The use of metal and nonmetal additives in electrolytes for the performance improvement of Zn-ion MSCs is considered a valid method. Herein, we propose an additive assisted Zn(CF3SO3)2 electrolyte as a redox-active electrolyte to prepare a flexible MXene-based Zn-ion hybrid MSC by a facile spraying method, and it consists of a conductive Ti3C2Tx-LiCl current collector and a Ti3C2Tx-DMSO cathode. In the process of the current density change (from 5 A cm-3 to 30 A cm-3 and then to 5 A cm-3), the capacity retention of the as-fabricated MSC with K3Co(CN)6 additive is over 99.0%, which is higher than 96.7% for the MSC with CKNSe additive and 82.3% for the MSC without an additive. Moreover, the designed MSC with the redox-active K3Co(CN)6 electrolyte exhibits a maximal capacitance retention of 70% after 5000 cycles. Furthermore, the flexible Zn-ion MSC with the Ti3C2Tx MXene cathode and a redox-active electrolyte was used to power a Ti3C2Tx based pressure sensor; the excellent press response of the integrated system not only provides insights into the development of large capacity and long-period stable energy storage devices, but also paves a new way for the development of capacitor-sensor integrated systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI