Liquid metal gallium-based printing of Cu-doped p-type Ga2O3 semiconductor and Ga2O3 homojunction diodes

同质结 材料科学 兴奋剂 光电子学 半导体 二极管 掺杂剂 欧姆接触 纳米技术 图层(电子)
作者
Qian Li,Bangdeng Du,Jianye Gao,Jing Liu
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:10 (1) 被引量:59
标识
DOI:10.1063/5.0097346
摘要

As a promising third-generation semiconductor, gallium oxide (Ga2O3) is currently facing bottleneck for its p-type doping. The doping process of conventional semiconductors usually introduces trace impurities, which is a major technical problem in the electronics industry. In this article, we conceived that the process complexity could be significantly alleviated, and a high degree of control over the results could be attained using the selective enrichment of liquid metal interfaces and harvesting the doped metal oxide semiconductor layers. An appropriate mechanism is thus proposed to prepare the doped semiconducting based on multicomponent liquid metal alloys. Liquid metal alloys with the certain Cu weight ratios in bulk are utilized to harvest Cu-doped Ga2O3 films, which result in p-type conductivity. Then, field-effect transistors were integrated using the printed p and n-type Ga2O3 films and demonstrated to own excellent electrical properties and stability. Au electrodes fabricated on the printed Ga2O3 and Cu-doped Ga2O3 layers showed good Ohmic behavior. Furthermore, high-power diodes are realized using printed p and n-type Ga2O3 homojunction through combining van der Waals stacking with transfer printing. The fabricated Ga2O3 homojunction diode exhibited good efficiency at room temperature, involving a rectification ratio of 103 and forward current density at 10 V (J@10 V) of 1.3 mA. This opens the opportunity for the cost-effective creation of semiconductor films with controlled metal dopants. The process disclosed here suggests important strategies for further synthesis and manufacturing routes in electronics industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulala发布了新的文献求助10
刚刚
刚刚
PhD-SCAU发布了新的文献求助10
2秒前
2秒前
汉堡包应助GGbond采纳,获得10
2秒前
小二郎应助GGbond采纳,获得10
2秒前
完美世界应助GGbond采纳,获得10
2秒前
善学以致用应助GGbond采纳,获得10
3秒前
田様应助GGbond采纳,获得10
3秒前
ok完成签到,获得积分10
3秒前
哈哈哈哈哈哈完成签到,获得积分10
4秒前
季不住完成签到,获得积分10
4秒前
ding应助文艺往事采纳,获得10
6秒前
6秒前
Goblin完成签到,获得积分10
6秒前
7秒前
优秀灵竹发布了新的文献求助10
7秒前
WNX完成签到 ,获得积分10
8秒前
8秒前
小二郎应助终归采纳,获得10
10秒前
10秒前
cc2713206完成签到,获得积分0
10秒前
薄荷软糖发布了新的文献求助10
11秒前
漂亮水绿完成签到,获得积分10
11秒前
小芋完成签到,获得积分10
11秒前
超帅冬云完成签到 ,获得积分10
11秒前
Owen应助清新的灵寒采纳,获得10
11秒前
赘婿应助xxx采纳,获得10
12秒前
倩倩完成签到 ,获得积分10
12秒前
圆圆圆完成签到,获得积分10
12秒前
kitty完成签到,获得积分10
13秒前
客念完成签到 ,获得积分10
14秒前
山大琦子完成签到,获得积分10
14秒前
herschelwu完成签到,获得积分10
14秒前
共享精神应助滑板采纳,获得10
14秒前
18秒前
cqcq发布了新的文献求助10
19秒前
20秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790