Liquid metal gallium-based printing of Cu-doped p-type Ga2O3 semiconductor and Ga2O3 homojunction diodes

同质结 材料科学 兴奋剂 光电子学 半导体 二极管 掺杂剂 欧姆接触 纳米技术 冶金 图层(电子)
作者
Qian Li,Bangdeng Du,Jianye Gao,Jing Liu
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:10 (1) 被引量:30
标识
DOI:10.1063/5.0097346
摘要

As a promising third-generation semiconductor, gallium oxide (Ga2O3) is currently facing bottleneck for its p-type doping. The doping process of conventional semiconductors usually introduces trace impurities, which is a major technical problem in the electronics industry. In this article, we conceived that the process complexity could be significantly alleviated, and a high degree of control over the results could be attained using the selective enrichment of liquid metal interfaces and harvesting the doped metal oxide semiconductor layers. An appropriate mechanism is thus proposed to prepare the doped semiconducting based on multicomponent liquid metal alloys. Liquid metal alloys with the certain Cu weight ratios in bulk are utilized to harvest Cu-doped Ga2O3 films, which result in p-type conductivity. Then, field-effect transistors were integrated using the printed p and n-type Ga2O3 films and demonstrated to own excellent electrical properties and stability. Au electrodes fabricated on the printed Ga2O3 and Cu-doped Ga2O3 layers showed good Ohmic behavior. Furthermore, high-power diodes are realized using printed p and n-type Ga2O3 homojunction through combining van der Waals stacking with transfer printing. The fabricated Ga2O3 homojunction diode exhibited good efficiency at room temperature, involving a rectification ratio of 103 and forward current density at 10 V (J@10 V) of 1.3 mA. This opens the opportunity for the cost-effective creation of semiconductor films with controlled metal dopants. The process disclosed here suggests important strategies for further synthesis and manufacturing routes in electronics industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵喵发布了新的文献求助10
1秒前
斯文败类应助77采纳,获得10
2秒前
2秒前
兜兜应助K1481691采纳,获得10
2秒前
3秒前
xhj发布了新的文献求助10
3秒前
Soda完成签到,获得积分10
3秒前
4秒前
Persist完成签到 ,获得积分10
4秒前
慕青应助sunsunsun采纳,获得10
4秒前
1953发布了新的文献求助10
5秒前
5秒前
善学以致用应助胖胖龙采纳,获得10
6秒前
6秒前
万豪完成签到,获得积分10
6秒前
7秒前
Orange应助xxxk采纳,获得10
7秒前
wyw发布了新的文献求助10
8秒前
8秒前
kajimi完成签到,获得积分10
8秒前
8秒前
zhangshaoqi发布了新的文献求助10
9秒前
9秒前
9秒前
kakaC发布了新的文献求助10
10秒前
11秒前
关关完成签到,获得积分10
12秒前
12秒前
柚子发布了新的文献求助10
12秒前
希望天下0贩的0应助nibaba采纳,获得30
12秒前
12秒前
13秒前
善学以致用应助杨觅采纳,获得10
14秒前
华仔应助ckl采纳,获得10
14秒前
dwz发布了新的文献求助10
14秒前
852应助舒心的棒棒糖采纳,获得10
14秒前
14秒前
15秒前
ZHANG完成签到,获得积分10
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655