Liquid metal gallium-based printing of Cu-doped p-type Ga2O3 semiconductor and Ga2O3 homojunction diodes

同质结 材料科学 兴奋剂 光电子学 半导体 二极管 掺杂剂 欧姆接触 纳米技术 图层(电子)
作者
Qian Li,Bangdeng Du,Jianye Gao,Jing Liu
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:10 (1) 被引量:60
标识
DOI:10.1063/5.0097346
摘要

As a promising third-generation semiconductor, gallium oxide (Ga2O3) is currently facing bottleneck for its p-type doping. The doping process of conventional semiconductors usually introduces trace impurities, which is a major technical problem in the electronics industry. In this article, we conceived that the process complexity could be significantly alleviated, and a high degree of control over the results could be attained using the selective enrichment of liquid metal interfaces and harvesting the doped metal oxide semiconductor layers. An appropriate mechanism is thus proposed to prepare the doped semiconducting based on multicomponent liquid metal alloys. Liquid metal alloys with the certain Cu weight ratios in bulk are utilized to harvest Cu-doped Ga2O3 films, which result in p-type conductivity. Then, field-effect transistors were integrated using the printed p and n-type Ga2O3 films and demonstrated to own excellent electrical properties and stability. Au electrodes fabricated on the printed Ga2O3 and Cu-doped Ga2O3 layers showed good Ohmic behavior. Furthermore, high-power diodes are realized using printed p and n-type Ga2O3 homojunction through combining van der Waals stacking with transfer printing. The fabricated Ga2O3 homojunction diode exhibited good efficiency at room temperature, involving a rectification ratio of 103 and forward current density at 10 V (J@10 V) of 1.3 mA. This opens the opportunity for the cost-effective creation of semiconductor films with controlled metal dopants. The process disclosed here suggests important strategies for further synthesis and manufacturing routes in electronics industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TTT发布了新的文献求助10
刚刚
清秀的大山完成签到,获得积分10
刚刚
清枫完成签到,获得积分10
1秒前
1秒前
FashionBoy应助智商洼地采纳,获得10
1秒前
田様应助谷策采纳,获得10
2秒前
张zz发布了新的文献求助10
3秒前
jzt12138发布了新的文献求助10
4秒前
流氓煎蛋发布了新的文献求助10
4秒前
清枫发布了新的文献求助10
4秒前
newbiology完成签到 ,获得积分10
4秒前
5秒前
研友_V8RQEZ完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
橘子发布了新的文献求助10
9秒前
已知中的未知完成签到 ,获得积分10
9秒前
9秒前
温柔的吐司完成签到,获得积分10
10秒前
10秒前
10秒前
12秒前
13秒前
13秒前
慕青应助JL采纳,获得50
14秒前
xixixi发布了新的文献求助10
14秒前
奋斗碧灵完成签到,获得积分10
14秒前
14秒前
迷人灰狼发布了新的文献求助10
14秒前
14秒前
bin发布了新的文献求助10
14秒前
15秒前
15秒前
17秒前
sinlar发布了新的文献求助10
17秒前
18秒前
蓝色的鱼发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711503
求助须知:如何正确求助?哪些是违规求助? 5204319
关于积分的说明 15264554
捐赠科研通 4863764
什么是DOI,文献DOI怎么找? 2610925
邀请新用户注册赠送积分活动 1561295
关于科研通互助平台的介绍 1518636