An improved multi-objective firefly algorithm for energy-efficient hybrid flowshop rescheduling problem

数学优化 萤火虫算法 计算机科学 作业车间调度 分类 人口 能源消耗 调度(生产过程) 生产(经济) 算法 工程类 地铁列车时刻表 粒子群优化 数学 宏观经济学 社会学 人口学 电气工程 经济 操作系统
作者
Ziyue Wang,Liangshan Shen,Xinyu Li,Liang Gao
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:385: 135738-135738 被引量:18
标识
DOI:10.1016/j.jclepro.2022.135738
摘要

Hybrid flowshop scheduling problem is a hot research topic, and is widely applied for production shop or line in chemical industry, metallurgical industry, semiconductor manufacturing and other industries. However, on the one hand, the uncertain events are inevitable in actual production, which will disrupt the production plan. On the other hand, nowadays the energy problem becomes more and more serious, and attracts much attention in the manufacturing industry. Therefore, an energy-efficient hybrid flowshop rescheduling problem under the machine breakdown is addressed in this paper. Firstly, the mathematical model for the problem is established, and an energy saving strategy based on problem model is designed, which can ensure the reduction of energy consumption without affecting the production efficiency. Then, an improved multi-objective firefly algorithm is proposed to optimize the production efficiency, energy consumption and production stability. To express the problem characteristics, a two-level encoding mechanism is used to describe the individual, and a corresponding decoding mechanism is presented to generate the scheduling scheme. By simulating the location updating law of the fireflies, the population updating rule is designed, in which the variable neighborhood search is employed to avoid the local optimal. To ensure the quality of the solution set, the fast non-dominated sorting method and elite individual reserving strategy are introduced to the population evolution. Finally, the numerical experimental results indicate that the designed energy saving strategy is effective, and the proposed algorithm obtains better Pareto frontier and performs the better convergence and diversity comparing with MOEA/D and NSGA-Ⅱ, the common algorithms to solve complex multi-objective optimization problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助晴栀采纳,获得10
刚刚
刚刚
elysia完成签到,获得积分10
刚刚
1秒前
6666666666完成签到 ,获得积分10
5秒前
zz完成签到,获得积分10
5秒前
Popeye应助阿胡采纳,获得30
6秒前
7秒前
魁魁完成签到,获得积分20
7秒前
PEKIEOKE发布了新的文献求助30
8秒前
8秒前
无语的凡梦完成签到,获得积分10
9秒前
wanci应助二十四桥明月夜采纳,获得10
10秒前
风清扬应助LaTeXer采纳,获得10
10秒前
leo关闭了leo文献求助
11秒前
推土机爱学习完成签到 ,获得积分10
11秒前
李萍萍发布了新的文献求助10
11秒前
11秒前
fdwang完成签到 ,获得积分10
11秒前
清漪完成签到 ,获得积分10
12秒前
深情安青应助海白采纳,获得10
12秒前
晴栀完成签到,获得积分10
12秒前
hetao286完成签到,获得积分10
13秒前
阿三的风光完成签到 ,获得积分10
13秒前
nature完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
科研狗完成签到 ,获得积分10
15秒前
追光者完成签到,获得积分10
15秒前
HJJHJH发布了新的文献求助10
16秒前
Advance.Cheng发布了新的文献求助10
16秒前
传统的大白完成签到,获得积分10
16秒前
复杂的白秋完成签到,获得积分10
17秒前
17秒前
舒适的平蓝完成签到,获得积分10
18秒前
DAI123完成签到,获得积分10
18秒前
18秒前
阳yang发布了新的文献求助10
18秒前
HIH完成签到 ,获得积分10
19秒前
可靠的寒风完成签到,获得积分10
20秒前
Pan完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029