An improved multi-objective firefly algorithm for energy-efficient hybrid flowshop rescheduling problem

数学优化 萤火虫算法 计算机科学 作业车间调度 分类 人口 能源消耗 调度(生产过程) 生产(经济) 算法 工程类 地铁列车时刻表 粒子群优化 数学 宏观经济学 社会学 人口学 电气工程 经济 操作系统
作者
Ziyue Wang,Liangshan Shen,Xinyu Li,Liang Gao
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:385: 135738-135738 被引量:18
标识
DOI:10.1016/j.jclepro.2022.135738
摘要

Hybrid flowshop scheduling problem is a hot research topic, and is widely applied for production shop or line in chemical industry, metallurgical industry, semiconductor manufacturing and other industries. However, on the one hand, the uncertain events are inevitable in actual production, which will disrupt the production plan. On the other hand, nowadays the energy problem becomes more and more serious, and attracts much attention in the manufacturing industry. Therefore, an energy-efficient hybrid flowshop rescheduling problem under the machine breakdown is addressed in this paper. Firstly, the mathematical model for the problem is established, and an energy saving strategy based on problem model is designed, which can ensure the reduction of energy consumption without affecting the production efficiency. Then, an improved multi-objective firefly algorithm is proposed to optimize the production efficiency, energy consumption and production stability. To express the problem characteristics, a two-level encoding mechanism is used to describe the individual, and a corresponding decoding mechanism is presented to generate the scheduling scheme. By simulating the location updating law of the fireflies, the population updating rule is designed, in which the variable neighborhood search is employed to avoid the local optimal. To ensure the quality of the solution set, the fast non-dominated sorting method and elite individual reserving strategy are introduced to the population evolution. Finally, the numerical experimental results indicate that the designed energy saving strategy is effective, and the proposed algorithm obtains better Pareto frontier and performs the better convergence and diversity comparing with MOEA/D and NSGA-Ⅱ, the common algorithms to solve complex multi-objective optimization problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灿烂完成签到,获得积分10
刚刚
柳暗花明1302完成签到,获得积分10
刚刚
未闻明日之花完成签到,获得积分10
1秒前
75986686完成签到,获得积分10
1秒前
hearz发布了新的文献求助10
1秒前
负责金毛完成签到,获得积分10
1秒前
fan051500完成签到,获得积分10
2秒前
清脆乐曲完成签到,获得积分10
2秒前
arzw完成签到,获得积分10
2秒前
勤奋的天亦完成签到,获得积分10
3秒前
3秒前
哒哒哒完成签到,获得积分10
3秒前
天水张家辉完成签到,获得积分10
3秒前
3秒前
乐一李完成签到,获得积分10
4秒前
ding应助无敌是多么寂寞采纳,获得10
4秒前
zyyyyyyyy完成签到 ,获得积分10
4秒前
会飞的蜗牛完成签到,获得积分10
4秒前
沉默的凝荷完成签到,获得积分10
4秒前
布小丁完成签到,获得积分20
5秒前
lv完成签到,获得积分10
5秒前
pikachu完成签到,获得积分10
5秒前
KYTHUI完成签到,获得积分10
5秒前
贺兰鸵鸟完成签到,获得积分10
6秒前
Rain1god完成签到,获得积分10
6秒前
kma完成签到,获得积分10
6秒前
南方周末完成签到,获得积分10
6秒前
凌代萱完成签到 ,获得积分10
7秒前
阿哲完成签到,获得积分10
7秒前
myuniv发布了新的文献求助10
7秒前
莫x莫完成签到 ,获得积分10
7秒前
Tingshan完成签到,获得积分10
7秒前
静待花开完成签到 ,获得积分10
7秒前
8秒前
叶子完成签到,获得积分10
8秒前
SciGPT应助会飞的蜗牛采纳,获得10
9秒前
布小丁发布了新的文献求助10
9秒前
Treasure完成签到,获得积分10
10秒前
10秒前
xiamovivi完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4946045
求助须知:如何正确求助?哪些是违规求助? 4210330
关于积分的说明 13087390
捐赠科研通 3990895
什么是DOI,文献DOI怎么找? 2184843
邀请新用户注册赠送积分活动 1200218
关于科研通互助平台的介绍 1113922