Nonstationary feature extraction based on stochastic resonance and its application in rolling bearing fault diagnosis under strong noise background

随机共振 噪音(视频) 频域 特征(语言学) 方位(导航) 断层(地质) 信号(编程语言) 振动 特征提取 计算机科学 时域 时频分析 傅里叶变换 信号处理 声学 背景噪声 控制理论(社会学) 模式识别(心理学) 算法 人工智能 物理 数学 数学分析 计算机视觉 电信 地质学 哲学 地震学 图像(数学) 滤波器(信号处理) 程序设计语言 雷达 控制(管理) 语言学
作者
Zhile Wang,Jianhua Yang,Yu Guo,Tao Gong,Zhen Shan
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:94 (1) 被引量:2
标识
DOI:10.1063/5.0121593
摘要

When the load and speed of rotating machinery change, the vibration signal of rolling bearing presents an obvious nonstationary characteristic. Stochastic resonance (SR) mainly is convenient to analyze the stationary feature of vibration signals with high signal-to-noise ratio. However, it is difficult for SR to extract the nonstationary feature of rolling bearings under strong noise background. For one thing, the frequency change of nonstationary signals makes the occurrence of SR very difficult. For another, the features of rolling bearings are large parameters and further prevent the SR method from performing well. Therefore, combined with order analysis (OA), adaptive frequency-shift SR is presented in this paper. To solve the problem of frequency change, OA is used to convert the nonstationary feature into stationary feature, which resamples the nonstationary signal in the time domain to stationary signal in the angular domain. To solve the other problem, the frequency-shift method based on Fourier transform is adopted to move the fault feature frequency to low frequency, and thus SR is more likely to occur under small parameter conditions. The simulated and experimental results indicate that not only the amplitude of fault feature but also the signal-to-noise ratio is significantly improved. These demonstrate that the fault features of rolling bearing in variable speed conditions are extracted successfully.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sallyshen完成签到 ,获得积分10
1秒前
运气爆棚发布了新的文献求助20
1秒前
1秒前
2秒前
汉堡包应助hd采纳,获得10
2秒前
liao应助ste采纳,获得10
3秒前
xxfsx应助ste采纳,获得10
3秒前
Shengang完成签到,获得积分10
4秒前
4秒前
二十一完成签到,获得积分10
5秒前
科研通AI6应助闫闫采纳,获得10
7秒前
硝基发布了新的文献求助10
7秒前
小二郎应助落花生采纳,获得20
8秒前
西西完成签到 ,获得积分10
8秒前
10秒前
10秒前
英姑应助小巧的若云采纳,获得10
10秒前
共享精神应助LL采纳,获得10
12秒前
李健的小迷弟应助肥鹤采纳,获得10
13秒前
彭于晏应助沈迎南采纳,获得10
13秒前
之之完成签到,获得积分10
13秒前
yy发布了新的文献求助30
15秒前
16秒前
CipherSage应助硝基采纳,获得10
16秒前
16秒前
17秒前
honghuhe发布了新的文献求助30
17秒前
852应助运气比较好采纳,获得10
17秒前
别管我了应助Joey采纳,获得30
18秒前
上官若男应助羞涩的寒松采纳,获得10
19秒前
情怀应助mouse_velocity采纳,获得10
20秒前
20秒前
20秒前
领导范儿应助牛牛采纳,获得10
21秒前
22秒前
1234发布了新的文献求助10
22秒前
22秒前
张姐发布了新的文献求助10
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474