Learning to Reuse Distractors to Support Multiple-Choice Question Generation in Education

计算机科学 背景(考古学) 重新使用 水准点(测量) 词汇 任务(项目管理) 特征(语言学) 人工智能 集合(抽象数据类型) 多项选择 自然语言处理 人机交互 过程(计算) 考试(生物学) 机器学习 法学 政治学 生态学 语言学 生物 阅读(过程) 地理 哲学 程序设计语言 管理 操作系统 大地测量学 经济 古生物学
作者
Semere Kiros Bitew,Amir Hadifar,Lucas Sterckx,Johannes Deleu,Chris Develder,Thomas Demeester
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 375-390 被引量:3
标识
DOI:10.1109/tlt.2022.3226523
摘要

Multiple choice questions (MCQs) are widely used in digital learning systems, as they allow for automating the assessment process. However, due to the increased digital literacy of students and the advent of social media platforms, MCQ tests are widely shared online, and teachers are continuously challenged to create new questions, which is an expensive and time-consuming task. A particularly sensitive aspect of MCQ creation is to devise relevant distractors, i.e., wrong answers that are not easily identifiable as being wrong. This paper studies how a large existing set of manually created answers and distractors for questions over a variety of domains, subjects, and languages can be leveraged to help teachers in creating new MCQs, by the smart reuse of existing distractors. We built several data-driven models based on context-aware question and distractor representations, and compared them with static feature-based models. The proposed models are evaluated with automated metrics and in a realistic user test with teachers. Both automatic and human evaluations indicate that context-aware models consistently outperform a static feature-based approach. For our best-performing context-aware model, on average 3 distractors out of the 10 shown to teachers were rated as high-quality distractors. We create a performance benchmark, and make it public, to enable comparison between different approaches and to introduce a more standardized evaluation of the task. The benchmark contains a test of 298 educational questions covering multiple subjects & languages and a 77k multilingual pool of distractor vocabulary for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助大师现在采纳,获得10
2秒前
2秒前
3秒前
3秒前
小马甲应助木子刈采纳,获得10
3秒前
学术小混子完成签到,获得积分10
3秒前
大个应助kingripple采纳,获得10
3秒前
wkjfh完成签到,获得积分0
4秒前
wangchunguang发布了新的文献求助10
4秒前
优秀的如冰完成签到,获得积分10
4秒前
Garfieldlilac完成签到,获得积分10
4秒前
4秒前
Pom完成签到,获得积分20
4秒前
任思懿完成签到,获得积分10
4秒前
5秒前
Wang完成签到 ,获得积分10
5秒前
SYLH应助科研小白采纳,获得10
5秒前
思源应助纯真的德地采纳,获得10
6秒前
爆米花应助xiaowang采纳,获得10
6秒前
支问凝完成签到,获得积分10
6秒前
深情傲柔发布了新的文献求助10
6秒前
7秒前
开朗安筠发布了新的文献求助10
7秒前
孤独的珩发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
深情安青应助fgjkl采纳,获得10
9秒前
安详世平发布了新的文献求助30
10秒前
Mss发布了新的文献求助10
10秒前
花玥鹿完成签到,获得积分10
10秒前
dannnnn发布了新的文献求助10
11秒前
xiaowang完成签到,获得积分10
12秒前
燚燚发布了新的文献求助10
13秒前
13秒前
颜好发布了新的文献求助10
14秒前
隐形曼青应助派大星采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609