微塑料
风化作用
聚酯纤维
纤维
织物
合成纤维
材料科学
复合材料
磨损(机械)
化学
环境化学
地质学
地貌学
作者
Rudolf Hufenus,Bernd Nowack
标识
DOI:10.1016/j.envpol.2023.121012
摘要
Synthetic textiles are considered a prime source of microplastics fibers which are a prevalent shape of microplastic pollution. Whilst the release mechanisms and formation of such microplastic fibers have been so far mainly studied in connection with laundry washing, there are some studies emerging that describe also other release pathways for microplastic fibers such as abrasion during wearing. The aim of this study was to consider weathering as another process contributing to the formation of microplastic fibers and their presence in the environment. Four types of polyester fabrics were selected and exposed to artificial weathering by UV-light for two months. The fabrics were extracted every 15 days to quantify and characterize the formed microplastics. Microplastic fibers with the diameter matching the size of the fibers in the textiles were observed. However, additional microplastic fibers of different shapes were also formed. These included partially broken fibers, thin fibers with a diameter below the size of the fiber in the fabrics, fibers flattened into a ribbon, and non-fibrous microplastics. The released microplastics evinced physical alterations on their surface in the form of pits and cracks. The released microplastics exhibited a steep increase in number with progressing weathering; from hundreds of fibers per gram of textile from unaged fabrics, to hundred thousands fibers (150,000-450,000 MPF/g) after 2 months of weathering. Additional 10,000-52,000 unfibrous microplastics/g were released from the weathered fabrics. While plain fabrics showed higher releases than interlock and fleece, further research is needed to evaluate the importance of the textile architecture on the weathering process in comparison with the production history of the fabrics. Based on a comparison with washing studies with the same textiles, we can estimate that the potential of weathered fabrics to be a source of microplastic fibers can be 20-40 times larger than washing only.
科研通智能强力驱动
Strongly Powered by AbleSci AI