Functional Age Estimation Through Neonatal Motion Characterization Using Continuous Video Recordings

运动(物理) 胎龄 计算机科学 人工智能 计算机视觉 持续时间(音乐) 运动估计 估计 机器学习 怀孕 遗传学 生物 文学类 艺术 经济 管理
作者
Sandie Cabon,Raphaël Weber,Jean‐Marc Simon,Patrick Pladys,Fabienne Porée,Guy Carrault
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1500-1511
标识
DOI:10.1109/jbhi.2022.3230061
摘要

The follow-up of the development of the premature baby is a major component of its clinical care since it has been shown that it can reveal a pathology. However, no method allowing an automated and continuous monitoring of this development has been proposed. Within the framework of the Digi-NewB European project, our team wishes to offer new clinical indices qualifying the maturation of newborns. In this study, we propose a new method to characterize motor activity from video recordings. For this purpose, we have chosen to characterize the motion temporal organization by drawing inspiration from sleep organization. Thus, we propose a fully automatic process allowing to extract motion features and to combine them to estimate a functional age. By investigating two datasets, one of 28.5 hours (manually annotated) from 33 newborns and one of 4,920 hours from 46 newborns, we show that the proposed approach is relevant for monitoring in clinical routine and that the extracted features reflect the maturation of preterm newborns. Indeed, a compact and interpretable model using gestational age and three motion features (mean duration of intervals with motion, total percentage of time spent in motion and number of intervals without motion) was designed to predict post-menstrual age of newborns and showed an admissible mean absolute error of 1.3 weeks. While the temporal organization of motion was not studied clinically due to a lack of technological means, these results open the door to new developments, new investigations and new knowledge on the evolution of motion in newborns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
四月是你的谎言完成签到 ,获得积分10
8秒前
王昭完成签到 ,获得积分10
9秒前
112233发布了新的文献求助20
9秒前
10秒前
10秒前
富华路完成签到,获得积分10
11秒前
11秒前
11秒前
壮观青亦完成签到 ,获得积分10
12秒前
祁问儿完成签到 ,获得积分10
13秒前
Ccccn完成签到,获得积分10
13秒前
14秒前
15秒前
不吃香菜发布了新的文献求助30
16秒前
RLV完成签到,获得积分10
16秒前
Shuaibin_Pei发布了新的文献求助10
18秒前
科研混子完成签到,获得积分10
19秒前
王志新完成签到,获得积分10
20秒前
dly7777发布了新的文献求助10
20秒前
cff完成签到,获得积分10
21秒前
老鼠咕噜发布了新的文献求助10
22秒前
leodu完成签到,获得积分10
22秒前
23秒前
zhuzhu发布了新的文献求助10
24秒前
科研通AI2S应助Shuaibin_Pei采纳,获得10
26秒前
勤恳睿渊发布了新的文献求助10
27秒前
fhbsdufh完成签到,获得积分10
27秒前
28秒前
29秒前
阳光皮带完成签到,获得积分20
30秒前
fawr完成签到 ,获得积分10
30秒前
dly7777完成签到,获得积分10
31秒前
33秒前
1234完成签到 ,获得积分10
33秒前
张然发布了新的文献求助10
33秒前
蛋妮完成签到 ,获得积分10
34秒前
panisa鹅完成签到,获得积分10
35秒前
坚强的严青完成签到,获得积分20
36秒前
春鸮鸟完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511