Functional Age Estimation Through Neonatal Motion Characterization Using Continuous Video Recordings

运动(物理) 胎龄 计算机科学 人工智能 计算机视觉 持续时间(音乐) 运动估计 估计 机器学习 怀孕 遗传学 生物 文学类 艺术 经济 管理
作者
Sandie Cabon,Raphaël Weber,Jean‐Marc Simon,Patrick Pladys,Fabienne Porée,Guy Carrault
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1500-1511
标识
DOI:10.1109/jbhi.2022.3230061
摘要

The follow-up of the development of the premature baby is a major component of its clinical care since it has been shown that it can reveal a pathology. However, no method allowing an automated and continuous monitoring of this development has been proposed. Within the framework of the Digi-NewB European project, our team wishes to offer new clinical indices qualifying the maturation of newborns. In this study, we propose a new method to characterize motor activity from video recordings. For this purpose, we have chosen to characterize the motion temporal organization by drawing inspiration from sleep organization. Thus, we propose a fully automatic process allowing to extract motion features and to combine them to estimate a functional age. By investigating two datasets, one of 28.5 hours (manually annotated) from 33 newborns and one of 4,920 hours from 46 newborns, we show that the proposed approach is relevant for monitoring in clinical routine and that the extracted features reflect the maturation of preterm newborns. Indeed, a compact and interpretable model using gestational age and three motion features (mean duration of intervals with motion, total percentage of time spent in motion and number of intervals without motion) was designed to predict post-menstrual age of newborns and showed an admissible mean absolute error of 1.3 weeks. While the temporal organization of motion was not studied clinically due to a lack of technological means, these results open the door to new developments, new investigations and new knowledge on the evolution of motion in newborns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周小浪完成签到,获得积分10
1秒前
kean1943完成签到,获得积分10
3秒前
xmhxpz完成签到,获得积分10
4秒前
轻松峻熙完成签到,获得积分10
4秒前
不会游泳的鱼完成签到,获得积分10
5秒前
健康的肺完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
脑洞疼应助DHVZA采纳,获得10
8秒前
激动的晓筠完成签到 ,获得积分10
11秒前
fff完成签到,获得积分10
12秒前
疯子不风完成签到,获得积分10
16秒前
福路完成签到 ,获得积分10
16秒前
儒雅的蜜粉完成签到,获得积分10
17秒前
Yinzixin完成签到,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
高中生完成签到,获得积分10
20秒前
文艺的枫叶完成签到 ,获得积分10
21秒前
orixero应助Yinzixin采纳,获得10
23秒前
缓慢的煎蛋完成签到,获得积分10
23秒前
几许星河皓月完成签到 ,获得积分10
26秒前
DHVZA发布了新的文献求助10
26秒前
zhengjing完成签到,获得积分10
27秒前
优雅山柏完成签到,获得积分10
28秒前
学林书屋发布了新的文献求助10
28秒前
高山我梦完成签到,获得积分10
29秒前
30秒前
32秒前
杏林春暖完成签到,获得积分10
32秒前
小圆完成签到,获得积分10
32秒前
现实的飞风完成签到,获得积分10
33秒前
幽默龙猫完成签到,获得积分10
34秒前
静静完成签到 ,获得积分10
34秒前
燕子完成签到,获得积分10
37秒前
DHVZA完成签到,获得积分10
37秒前
lgl完成签到,获得积分10
38秒前
hhh完成签到,获得积分10
40秒前
想睡觉的小笼包完成签到 ,获得积分10
41秒前
42秒前
祖f完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044737
求助须知:如何正确求助?哪些是违规求助? 4274288
关于积分的说明 13323576
捐赠科研通 4088026
什么是DOI,文献DOI怎么找? 2236649
邀请新用户注册赠送积分活动 1244065
关于科研通互助平台的介绍 1172119