已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Role of Radiomics Features and Machine Learning for the Histological Classification of Stage I and Stage II NSCLC at [18F]FDG PET/CT: A Comparison between Two PET/CT Scanners

医学 无线电技术 扫描仪 PET-CT 阶段(地层学) 核医学 随机森林 放射科 逻辑回归 非小细胞肺癌 分割 人工智能 正电子发射断层摄影术 肺癌 病理 计算机科学 内科学 生物 古生物学 A549电池
作者
Francesco Dondi,Roberto Gatta,Domenico Albano,Pietro Bellini,Luca Camoni,Giorgio Treglia,Francesco Bertagna
出处
期刊:Journal of Clinical Medicine [MDPI AG]
卷期号:12 (1): 255-255 被引量:2
标识
DOI:10.3390/jcm12010255
摘要

The aim of this study was to compare two different PET/CT tomographs for the evaluation of the role of radiomics features (RaF) and machine learning (ML) in the prediction of the histological classification of stage I and II non-small-cell lung cancer (NSCLC) at baseline [18F]FDG PET/CT. A total of 227 patients were retrospectively included and, after volumetric segmentation, RaF were extracted. All of the features were tested for significant differences between the two scanners and considering both the scanners together, and their performances in predicting the histology of NSCLC were analyzed by testing of different ML approaches: Logistic Regressor (LR), k-Nearest Neighbors (kNN), Decision Tree (DT) and Random Forest (RF). In general, the models with best performances for all the scanners were kNN and LR and moreover the kNN model had better performances compared to the other. The impact of the PET/CT scanner used for the acquisition of the scans on the performances of RaF was evident: mean area under the curve (AUC) values for scanner 2 were lower compared to scanner 1 and both the scanner considered together. In conclusion, our study enabled the selection of some [18F]FDG PET/CT RaF and ML models that are able to predict with good performances the histological subtype of NSCLC. Furthermore, the type of PET/CT scanner may influence these performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助刘萌清采纳,获得10
刚刚
挑片岛屿发布了新的文献求助10
1秒前
2秒前
上官若男应助神医magical采纳,获得10
3秒前
Tuniverse_完成签到 ,获得积分10
7秒前
想毕业的笑笑完成签到,获得积分20
8秒前
8秒前
彭于晏应助默默的采纳,获得10
9秒前
研友_ngX12Z发布了新的文献求助10
9秒前
10秒前
充电宝应助福多多采纳,获得10
10秒前
量子星尘发布了新的文献求助10
13秒前
Akebi完成签到,获得积分10
14秒前
14秒前
大大怪完成签到,获得积分20
14秒前
海荷完成签到,获得积分10
14秒前
贾克斯发布了新的文献求助10
15秒前
15秒前
科研白完成签到 ,获得积分10
17秒前
17秒前
18秒前
19秒前
专一的蛋挞完成签到,获得积分10
20秒前
20秒前
pure完成签到 ,获得积分10
21秒前
默默的发布了新的文献求助10
22秒前
张莜莜发布了新的文献求助10
22秒前
多情的安雁完成签到,获得积分10
22秒前
23秒前
Z1关注了科研通微信公众号
24秒前
Criminology34应助专一的蛋挞采纳,获得10
25秒前
李晓发布了新的文献求助30
25秒前
27秒前
Laputa发布了新的文献求助10
28秒前
飘逸惠完成签到,获得积分10
30秒前
bc完成签到,获得积分10
30秒前
32完成签到,获得积分20
30秒前
32秒前
32秒前
NexusExplorer应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627458
求助须知:如何正确求助?哪些是违规求助? 4713928
关于积分的说明 14962390
捐赠科研通 4784838
什么是DOI,文献DOI怎么找? 2554884
邀请新用户注册赠送积分活动 1516380
关于科研通互助平台的介绍 1476702