FFT pattern recognition of crystal HRTEM image with deep learning

高分辨率透射电子显微镜 快速傅里叶变换 计算机科学 人工智能 图像处理 计算机视觉 光学 傅里叶变换 材料科学 模式识别(心理学) 衍射 物理 算法 图像(数学) 量子力学
作者
Quan Zhang,Ru Bai,Bo Peng,Zhen Wang,Yangyi Liu
出处
期刊:Micron [Elsevier]
卷期号:166: 103402-103402 被引量:4
标识
DOI:10.1016/j.micron.2022.103402
摘要

Rapid analysis and processing of large quantities of data obtained from in-situ transmission electron microscope (TEM) experiments can save researchers from the burdensome manual analysis work. The method mentioned in this paper combines deep learning and computer vision technology to realize the rapid automatic processing of end-to-end crystal high-resolution transmission electron microscope (HRTEM) images, which has great potential in assisting TEM image analysis. For the fine-grained result, the HRTEM image is divided into multiple patches by sliding window, and 2D fast Fourier transform (FFT) is performed, and then all FFT images are inputted into the designed LCA-Unet to extract bright spots. LCA-Unet combines local contrast and attention mechanism on the basis of U-net. Even if the bright spots in FFT images are weak, the proposed neural network can extract bright spots effectively. Using computer vision and the information of bright spots above mentioned, the automatic FFT pattern recognition is completed by three steps. First step is to calculate the precise coordinates of the bright spots, the lattice spacings and the inter-plane angles in each patch. Second step is to match the lattice spacing and the angles with the powder diffraction file (PDF) to determine the material phase of each patch. Third step is to merge the patches with same phase. Taking the HRTEM image of zirconium and its oxide nanoparticles as an example, the results obtained by the proposed method are basically consistent with manual identification. Thus the approach could be used to automatically and effectively find the phase region of interest. It takes about 3 s to process a 4 K × 4 K HRTEM image on a modern desktop computer with NVIDIA GPU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
VDC发布了新的文献求助10
1秒前
REN发布了新的文献求助20
1秒前
盼盼完成签到,获得积分10
2秒前
脑洞疼应助半生采纳,获得30
2秒前
东东完成签到,获得积分10
2秒前
中岛悠斗完成签到,获得积分10
2秒前
LuLan0401完成签到,获得积分10
3秒前
3秒前
语秋完成签到,获得积分10
3秒前
耍酷青梦完成签到 ,获得积分10
3秒前
充电宝应助xhy采纳,获得10
3秒前
陈海伦完成签到 ,获得积分10
4秒前
4秒前
4秒前
小汤圆发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
曾曾完成签到,获得积分10
5秒前
721完成签到,获得积分10
6秒前
糟糕的雪糕完成签到,获得积分10
6秒前
谁能拒绝周杰伦呢完成签到,获得积分10
6秒前
MM完成签到,获得积分10
6秒前
千幻完成签到,获得积分10
6秒前
6秒前
完美世界应助娜行采纳,获得10
7秒前
Again完成签到,获得积分10
7秒前
科研小菜鸟完成签到,获得积分20
7秒前
胡枝子完成签到,获得积分10
8秒前
苹果从菡完成签到,获得积分10
8秒前
ooseabiscuit完成签到,获得积分10
8秒前
8秒前
淡淡的雪发布了新的文献求助10
8秒前
不打扰完成签到 ,获得积分10
9秒前
千幻发布了新的文献求助10
9秒前
crr发布了新的文献求助10
9秒前
9秒前
10秒前
jklwss完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672