FFT pattern recognition of crystal HRTEM image with deep learning

高分辨率透射电子显微镜 快速傅里叶变换 计算机科学 人工智能 图像处理 计算机视觉 光学 傅里叶变换 材料科学 模式识别(心理学) 衍射 物理 算法 图像(数学) 量子力学
作者
Quan Zhang,Ru Bai,Bo Peng,Zhen Wang,Yangyi Liu
出处
期刊:Micron [Elsevier BV]
卷期号:166: 103402-103402 被引量:4
标识
DOI:10.1016/j.micron.2022.103402
摘要

Rapid analysis and processing of large quantities of data obtained from in-situ transmission electron microscope (TEM) experiments can save researchers from the burdensome manual analysis work. The method mentioned in this paper combines deep learning and computer vision technology to realize the rapid automatic processing of end-to-end crystal high-resolution transmission electron microscope (HRTEM) images, which has great potential in assisting TEM image analysis. For the fine-grained result, the HRTEM image is divided into multiple patches by sliding window, and 2D fast Fourier transform (FFT) is performed, and then all FFT images are inputted into the designed LCA-Unet to extract bright spots. LCA-Unet combines local contrast and attention mechanism on the basis of U-net. Even if the bright spots in FFT images are weak, the proposed neural network can extract bright spots effectively. Using computer vision and the information of bright spots above mentioned, the automatic FFT pattern recognition is completed by three steps. First step is to calculate the precise coordinates of the bright spots, the lattice spacings and the inter-plane angles in each patch. Second step is to match the lattice spacing and the angles with the powder diffraction file (PDF) to determine the material phase of each patch. Third step is to merge the patches with same phase. Taking the HRTEM image of zirconium and its oxide nanoparticles as an example, the results obtained by the proposed method are basically consistent with manual identification. Thus the approach could be used to automatically and effectively find the phase region of interest. It takes about 3 s to process a 4 K × 4 K HRTEM image on a modern desktop computer with NVIDIA GPU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锅锅发布了新的文献求助10
刚刚
刚刚
FashionBoy应助阿巴阿巴采纳,获得10
1秒前
junzheng完成签到,获得积分10
3秒前
shmily完成签到,获得积分10
3秒前
跳跳妈妈发布了新的文献求助10
3秒前
小蘑菇应助高序采纳,获得10
3秒前
00完成签到 ,获得积分10
4秒前
赘婿应助复杂的扬采纳,获得10
4秒前
神勇傲儿完成签到,获得积分20
4秒前
5秒前
5秒前
刘齐发布了新的文献求助10
6秒前
6秒前
8秒前
9秒前
9秒前
shmily发布了新的文献求助10
10秒前
听说发布了新的文献求助10
10秒前
昵称儿完成签到 ,获得积分10
10秒前
wjx发布了新的文献求助10
11秒前
11秒前
lyp7028完成签到,获得积分10
11秒前
asda发布了新的文献求助10
12秒前
加电时间完成签到,获得积分10
12秒前
Ha7发布了新的文献求助10
12秒前
星辰大海应助Two-Capitals采纳,获得10
13秒前
13秒前
爆米花应助大饼卷肉采纳,获得10
14秒前
CipherSage应助校长采纳,获得10
14秒前
苏灿应助kassidy采纳,获得10
14秒前
secost发布了新的文献求助10
14秒前
宋怡慷完成签到,获得积分10
15秒前
15秒前
1111完成签到,获得积分10
15秒前
顾矜应助123456采纳,获得10
16秒前
ziying126发布了新的文献求助10
16秒前
思源应助asda采纳,获得10
17秒前
17秒前
香蕉觅云应助无望幽月采纳,获得10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974856
求助须知:如何正确求助?哪些是违规求助? 3519400
关于积分的说明 11198085
捐赠科研通 3255563
什么是DOI,文献DOI怎么找? 1797860
邀请新用户注册赠送积分活动 877208
科研通“疑难数据库(出版商)”最低求助积分说明 806219