Deep Learning‐Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi‐Institutional Cohort Study

医学 乳腺癌 队列 四分位间距 接收机工作特性 回顾性队列研究 乳房磁振造影 放射科 癌症 肿瘤科 内科学 乳腺摄影术
作者
Markus H. A. Janse,Luuk M. Janssen,Bas H. M. van der Velden,Maaike R. Moman,Elian J M Wolters-van der Ben,Marc C. J. M. Kock,Max A. Viergever,P. J. van Diest,Kenneth G. A. Gilhuijs
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (6): 1739-1749 被引量:6
标识
DOI:10.1002/jmri.28679
摘要

While several methods have been proposed for automated assessment of breast-cancer response to neoadjuvant chemotherapy on breast MRI, limited information is available about their performance across multiple institutions.To assess the value and robustness of deep learning-derived volumes of locally advanced breast cancer (LABC) on MRI to infer the presence of residual disease after neoadjuvant chemotherapy.Retrospective.Training cohort: 102 consecutive female patients with LABC scheduled for neoadjuvant chemotherapy (NAC) from a single institution (age: 25-73 years). Independent testing cohort: 55 consecutive female patients with LABC from four institutions (age: 25-72 years).Training cohort: single vendor 1.5 T or 3.0 T. Testing cohort: multivendor 3.0 T. Gradient echo dynamic contrast-enhanced sequences.A convolutional neural network (nnU-Net) was trained to segment LABC. Based on resulting tumor volumes, an extremely randomized tree model was trained to assess residual cancer burden (RCB)-0/I vs. RCB-II/III. An independent model was developed using functional tumor volume (FTV). Models were tested on an independent testing cohort and response assessment performance and robustness across multiple institutions were assessed.The receiver operating characteristic (ROC) was used to calculate the area under the ROC curve (AUC). DeLong's method was used to compare AUCs. Correlations were calculated using Pearson's method. P values <0.05 were considered significant.Automated segmentation resulted in a median (interquartile range [IQR]) Dice score of 0.87 (0.62-0.93), with similar volumetric measurements (R = 0.95, P < 0.05). Automated volumetric measurements were significantly correlated with FTV (R = 0.80). Tumor volume-derived from deep learning of DCE-MRI was associated with RCB, yielding an AUC of 0.76 to discriminate between RCB-0/I and RCB-II/III, performing similar to the FTV-based model (AUC = 0.77, P = 0.66). Performance was comparable across institutions (IQR AUC: 0.71-0.84).Deep learning-based segmentation estimates changes in tumor load on DCE-MRI that are associated with RCB after NAC and is robust against variations between institutions.2.Stage 4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的可仁完成签到,获得积分10
刚刚
司徒迎曼完成签到,获得积分10
刚刚
烟花应助激情的一斩采纳,获得10
刚刚
天天快乐应助11采纳,获得10
1秒前
36456657应助八九采纳,获得50
1秒前
潦草完成签到,获得积分20
1秒前
华仔应助科研通管家采纳,获得10
1秒前
freesialll完成签到 ,获得积分10
1秒前
深情安青应助科研通管家采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得20
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
摇摇晃晃完成签到 ,获得积分10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
贪玩手链应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
李健的小迷弟应助liyi采纳,获得10
3秒前
华仔应助科研通管家采纳,获得20
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得20
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740