Deep Learning‐Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi‐Institutional Cohort Study

医学 乳腺癌 队列 四分位间距 接收机工作特性 回顾性队列研究 乳房磁振造影 放射科 癌症 肿瘤科 内科学 乳腺摄影术
作者
Markus H. A. Janse,Luuk M. Janssen,Bas H. M. van der Velden,Maaike R. Moman,Elian J M Wolters-van der Ben,Marc C. J. M. Kock,Max A. Viergever,P. J. van Diest,Kenneth G. A. Gilhuijs
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (6): 1739-1749 被引量:6
标识
DOI:10.1002/jmri.28679
摘要

While several methods have been proposed for automated assessment of breast-cancer response to neoadjuvant chemotherapy on breast MRI, limited information is available about their performance across multiple institutions.To assess the value and robustness of deep learning-derived volumes of locally advanced breast cancer (LABC) on MRI to infer the presence of residual disease after neoadjuvant chemotherapy.Retrospective.Training cohort: 102 consecutive female patients with LABC scheduled for neoadjuvant chemotherapy (NAC) from a single institution (age: 25-73 years). Independent testing cohort: 55 consecutive female patients with LABC from four institutions (age: 25-72 years).Training cohort: single vendor 1.5 T or 3.0 T. Testing cohort: multivendor 3.0 T. Gradient echo dynamic contrast-enhanced sequences.A convolutional neural network (nnU-Net) was trained to segment LABC. Based on resulting tumor volumes, an extremely randomized tree model was trained to assess residual cancer burden (RCB)-0/I vs. RCB-II/III. An independent model was developed using functional tumor volume (FTV). Models were tested on an independent testing cohort and response assessment performance and robustness across multiple institutions were assessed.The receiver operating characteristic (ROC) was used to calculate the area under the ROC curve (AUC). DeLong's method was used to compare AUCs. Correlations were calculated using Pearson's method. P values <0.05 were considered significant.Automated segmentation resulted in a median (interquartile range [IQR]) Dice score of 0.87 (0.62-0.93), with similar volumetric measurements (R = 0.95, P < 0.05). Automated volumetric measurements were significantly correlated with FTV (R = 0.80). Tumor volume-derived from deep learning of DCE-MRI was associated with RCB, yielding an AUC of 0.76 to discriminate between RCB-0/I and RCB-II/III, performing similar to the FTV-based model (AUC = 0.77, P = 0.66). Performance was comparable across institutions (IQR AUC: 0.71-0.84).Deep learning-based segmentation estimates changes in tumor load on DCE-MRI that are associated with RCB after NAC and is robust against variations between institutions.2.Stage 4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光飞风完成签到,获得积分20
刚刚
1秒前
4秒前
大方芷文关注了科研通微信公众号
5秒前
orixero应助kingwill采纳,获得20
6秒前
KGYM完成签到,获得积分10
7秒前
小鼠星球发布了新的文献求助10
7秒前
所所应助考拉采纳,获得10
9秒前
紫陌发布了新的文献求助10
10秒前
希波克拉顶完成签到,获得积分10
11秒前
柔弱的千秋完成签到,获得积分20
12秒前
12秒前
13秒前
好大一只小坏蛋完成签到,获得积分10
13秒前
15秒前
lan完成签到,获得积分10
15秒前
15秒前
wx发布了新的文献求助10
16秒前
16秒前
24K金纯发布了新的文献求助10
17秒前
NexusExplorer应助Aurora.H采纳,获得10
19秒前
kk发布了新的文献求助100
19秒前
20秒前
21秒前
大方芷文发布了新的文献求助10
22秒前
希望天下0贩的0应助Uload采纳,获得10
23秒前
小巧的洋葱完成签到 ,获得积分10
23秒前
温柔一刀发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
研友_LpQGjn完成签到 ,获得积分10
25秒前
赘婿应助Mark采纳,获得10
26秒前
祁尒完成签到,获得积分10
27秒前
27秒前
28秒前
LL发布了新的文献求助10
29秒前
空帆船发布了新的文献求助10
30秒前
爆米花应助千灯采纳,获得10
31秒前
流飒完成签到,获得积分10
32秒前
烟花应助husker采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152