Deep Learning‐Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi‐Institutional Cohort Study

医学 乳腺癌 队列 四分位间距 接收机工作特性 回顾性队列研究 乳房磁振造影 放射科 癌症 肿瘤科 内科学 乳腺摄影术
作者
Markus H. A. Janse,Luuk M. Janssen,Bas H. M. van der Velden,Maaike R. Moman,Elian J M Wolters-van der Ben,Marc C. J. M. Kock,Max A. Viergever,P. J. van Diest,Kenneth G. A. Gilhuijs
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (6): 1739-1749 被引量:6
标识
DOI:10.1002/jmri.28679
摘要

While several methods have been proposed for automated assessment of breast-cancer response to neoadjuvant chemotherapy on breast MRI, limited information is available about their performance across multiple institutions.To assess the value and robustness of deep learning-derived volumes of locally advanced breast cancer (LABC) on MRI to infer the presence of residual disease after neoadjuvant chemotherapy.Retrospective.Training cohort: 102 consecutive female patients with LABC scheduled for neoadjuvant chemotherapy (NAC) from a single institution (age: 25-73 years). Independent testing cohort: 55 consecutive female patients with LABC from four institutions (age: 25-72 years).Training cohort: single vendor 1.5 T or 3.0 T. Testing cohort: multivendor 3.0 T. Gradient echo dynamic contrast-enhanced sequences.A convolutional neural network (nnU-Net) was trained to segment LABC. Based on resulting tumor volumes, an extremely randomized tree model was trained to assess residual cancer burden (RCB)-0/I vs. RCB-II/III. An independent model was developed using functional tumor volume (FTV). Models were tested on an independent testing cohort and response assessment performance and robustness across multiple institutions were assessed.The receiver operating characteristic (ROC) was used to calculate the area under the ROC curve (AUC). DeLong's method was used to compare AUCs. Correlations were calculated using Pearson's method. P values <0.05 were considered significant.Automated segmentation resulted in a median (interquartile range [IQR]) Dice score of 0.87 (0.62-0.93), with similar volumetric measurements (R = 0.95, P < 0.05). Automated volumetric measurements were significantly correlated with FTV (R = 0.80). Tumor volume-derived from deep learning of DCE-MRI was associated with RCB, yielding an AUC of 0.76 to discriminate between RCB-0/I and RCB-II/III, performing similar to the FTV-based model (AUC = 0.77, P = 0.66). Performance was comparable across institutions (IQR AUC: 0.71-0.84).Deep learning-based segmentation estimates changes in tumor load on DCE-MRI that are associated with RCB after NAC and is robust against variations between institutions.2.Stage 4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助ks采纳,获得10
2秒前
2秒前
怕孤单的耳机完成签到,获得积分10
2秒前
落寞溪灵完成签到 ,获得积分10
2秒前
Ava应助通研科采纳,获得20
3秒前
4秒前
韶冥茗完成签到,获得积分10
4秒前
5秒前
6秒前
踏实的白羊完成签到,获得积分10
6秒前
luodd发布了新的文献求助30
7秒前
7秒前
深情安青应助小李采纳,获得10
7秒前
8秒前
Aurorrra完成签到 ,获得积分20
9秒前
9秒前
King完成签到,获得积分10
10秒前
11秒前
Anna发布了新的文献求助10
11秒前
up发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
zc发布了新的文献求助10
12秒前
黄雪柴发布了新的文献求助10
12秒前
共享精神应助ckl采纳,获得10
13秒前
可耐的白山完成签到,获得积分10
13秒前
天天快乐应助吴舟采纳,获得10
14秒前
Lucas应助慈祥的翠桃采纳,获得10
15秒前
科研通AI2S应助慈祥的翠桃采纳,获得10
15秒前
YUYUYU应助慈祥的翠桃采纳,获得10
15秒前
17秒前
17秒前
慕青应助阴晴采纳,获得10
17秒前
调研昵称发布了新的文献求助10
17秒前
18秒前
大力日记本完成签到,获得积分20
19秒前
小野菌完成签到,获得积分10
20秒前
王老吉发布了新的文献求助10
21秒前
Aurorrra关注了科研通微信公众号
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245593
求助须知:如何正确求助?哪些是违规求助? 2889244
关于积分的说明 8257665
捐赠科研通 2557607
什么是DOI,文献DOI怎么找? 1386314
科研通“疑难数据库(出版商)”最低求助积分说明 650285
邀请新用户注册赠送积分活动 626629