离域电子
催化作用
原子轨道
材料科学
光谱学
协调数
红外光谱学
氧化态
Atom(片上系统)
协调球
光化学
结晶学
电子
化学
离子
晶体结构
物理
有机化学
生物化学
量子力学
计算机科学
嵌入式系统
作者
Qiyou Wang,Minyang Dai,Hongmei Li,Ying‐Rui Lu,Ting‐Shan Chan,Chao Ma,Kang Liu,Junwei Fu,Wanru Liao,Shanyong Chen,Evangelina Pensa,Ye Wang,Shiguo Zhang,Yifei Sun,Emiliano Cortés,Min Liu
标识
DOI:10.1002/adma.202300695
摘要
Main group single atom catalysts (SACs) are promising for CO2 electroreduction to CO by virtue of their ability in preventing the hydrogen evolution reaction and CO poisoning. Unfortunately, their delocalized orbitals reduce the CO2 activation to *COOH. Herein, an O doping strategy to localize electrons on p-orbitals through asymmetric coordination of Ca SAC sites (Ca-N3 O) is developed, thus enhancing the CO2 activation. Theoretical calculations indicate that asymmetric coordination of Ca-N3 O improves electron-localization around Ca sites and thus promotes *COOH formation. X-ray absorption fine spectroscopy shows the obtained Ca-N3 O features: one O and three N coordinated atoms with one Ca as a reactive site. In situ attenuated total reflection infrared spectroscopy proves that Ca-N3 O promotes *COOH formation. As a result, the Ca-N3 O catalyst exhibits a state-of-the-art turnover frequency of ≈15 000 per hour in an H-cell and a large current density of -400 mA cm-2 with a CO Faradaic efficiency (FE) ≥ 90% in a flow cell. Moreover, Ca-N3 O sites retain a FE above 90% even with a 30% diluted CO2 concentration.
科研通智能强力驱动
Strongly Powered by AbleSci AI