Joint extraction method of entity relationship in Chinese Medicine based on Data Augmentation and Deep Learning

计算机科学 接头(建筑物) 关系抽取 质量(理念) 人工智能 信息抽取 数据挖掘 知识抽取 数据提取 情报检索 自然语言处理 机器学习 梅德林 工程类 认识论 哲学 建筑工程 法学 政治学
作者
Jigen Luo,Yang Yuan,Jianqiang Du,Qiang Shi,Wangping Xiong,Qiming Zheng
标识
DOI:10.1145/3573428.3573668
摘要

TCM texts are rich in evidence-based information, and a crucial step in knowledge mining is using high-tech tools to organize and store TCM texts in a systematic manner. Knowledge graphs are better suited to organizing and preserving the knowledge of TCM texts with complex relationships than typical databases are. Building high-quality knowledge maps requires accurate and efficient entity relationship extraction, and completely automated entity relationship extraction necessitates the creation of a sizable amount of high-quality corpus data, which increases expenses and lowers productivity. Because the same entity can generate many relations in the joint extraction of TCM entity relations and there are insufficient corpus data, these issues must be addressed. The joint extraction model of TCM entity interactions proposed in this paper is based on deep learning and data augmentation. Using a multi-head selective bidirectional long and short-term memory network (multi-head-BILSTM), the relationship overlap problem is first solved, and the data is then enhanced using five mechanisms: entity replacement, random addition, random deletion, random replacement, and integrated enhancement. We quantitatively assess the benefits and drawbacks of several relationship extraction algorithms as well as the performance improvements of TCM entity relationship joint extraction brought about by five alternative data augmentation mechanisms. In conclusion, our research has the potential to significantly enhance the efficiency of joint TCM entity relationship extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花发布了新的文献求助10
刚刚
CipherSage应助BingHe采纳,获得10
刚刚
pearl发布了新的文献求助10
刚刚
只要平凡完成签到,获得积分10
1秒前
北过居庸完成签到,获得积分10
1秒前
2秒前
我是老大应助坚强百褶裙采纳,获得10
2秒前
2秒前
2秒前
3秒前
blablawindy发布了新的文献求助10
3秒前
3秒前
浮游应助mumumuzzz采纳,获得10
3秒前
张昭蓉完成签到,获得积分10
3秒前
4秒前
LeeWX完成签到,获得积分20
4秒前
5秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
奋斗的若云完成签到,获得积分10
7秒前
7秒前
anton完成签到,获得积分10
7秒前
单纯的又菱完成签到,获得积分10
7秒前
7秒前
小脑袋发布了新的文献求助10
7秒前
共享精神应助鲜艳的手链采纳,获得10
8秒前
Owen应助hhh采纳,获得10
8秒前
忽闻水完成签到,获得积分10
8秒前
元谷雪发布了新的文献求助30
8秒前
彳亍1117发布了新的文献求助10
8秒前
潇洒闭月发布了新的文献求助10
8秒前
9秒前
泥撑完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
科研通AI6应助Chain采纳,获得10
10秒前
10秒前
流光发布了新的文献求助10
11秒前
亚铁氰化钾应助Maxw采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794