Joint extraction method of entity relationship in Chinese Medicine based on Data Augmentation and Deep Learning

计算机科学 接头(建筑物) 关系抽取 质量(理念) 人工智能 信息抽取 数据挖掘 知识抽取 数据提取 情报检索 自然语言处理 机器学习 梅德林 工程类 认识论 哲学 建筑工程 法学 政治学
作者
Jigen Luo,Yang Yuan,Jianqiang Du,Qiang Shi,Wangping Xiong,Qiming Zheng
标识
DOI:10.1145/3573428.3573668
摘要

TCM texts are rich in evidence-based information, and a crucial step in knowledge mining is using high-tech tools to organize and store TCM texts in a systematic manner. Knowledge graphs are better suited to organizing and preserving the knowledge of TCM texts with complex relationships than typical databases are. Building high-quality knowledge maps requires accurate and efficient entity relationship extraction, and completely automated entity relationship extraction necessitates the creation of a sizable amount of high-quality corpus data, which increases expenses and lowers productivity. Because the same entity can generate many relations in the joint extraction of TCM entity relations and there are insufficient corpus data, these issues must be addressed. The joint extraction model of TCM entity interactions proposed in this paper is based on deep learning and data augmentation. Using a multi-head selective bidirectional long and short-term memory network (multi-head-BILSTM), the relationship overlap problem is first solved, and the data is then enhanced using five mechanisms: entity replacement, random addition, random deletion, random replacement, and integrated enhancement. We quantitatively assess the benefits and drawbacks of several relationship extraction algorithms as well as the performance improvements of TCM entity relationship joint extraction brought about by five alternative data augmentation mechanisms. In conclusion, our research has the potential to significantly enhance the efficiency of joint TCM entity relationship extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助难过千易采纳,获得10
刚刚
刚刚
FashionBoy应助靠谱采纳,获得10
1秒前
2秒前
充实余生发布了新的文献求助10
2秒前
ylky完成签到 ,获得积分10
3秒前
3秒前
Murphy完成签到,获得积分10
3秒前
鲍幻悲发布了新的文献求助10
4秒前
Ry0_关注了科研通微信公众号
4秒前
筱筱完成签到,获得积分10
4秒前
Yuliu发布了新的文献求助10
4秒前
5秒前
崔凝荷完成签到,获得积分10
5秒前
5656关注了科研通微信公众号
5秒前
李李发布了新的文献求助10
6秒前
6秒前
6秒前
惊蛰完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
小徐医生发布了新的文献求助10
8秒前
筱筱发布了新的文献求助10
9秒前
9秒前
Georgechan发布了新的文献求助30
10秒前
Yuliu完成签到,获得积分10
10秒前
子车谷波发布了新的文献求助10
10秒前
研友_n0kqxL发布了新的文献求助10
10秒前
Liufgui应助充实余生采纳,获得20
11秒前
Junning发布了新的文献求助10
11秒前
11秒前
要吃烧饼么完成签到,获得积分10
12秒前
12秒前
12秒前
不不发布了新的文献求助10
12秒前
宛海发布了新的文献求助10
14秒前
开心网络发布了新的文献求助10
15秒前
火龙果发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999649
求助须知:如何正确求助?哪些是违规求助? 3539089
关于积分的说明 11275836
捐赠科研通 3277841
什么是DOI,文献DOI怎么找? 1807756
邀请新用户注册赠送积分活动 884129
科研通“疑难数据库(出版商)”最低求助积分说明 810142