亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint extraction method of entity relationship in Chinese Medicine based on Data Augmentation and Deep Learning

计算机科学 接头(建筑物) 关系抽取 质量(理念) 人工智能 信息抽取 数据挖掘 知识抽取 数据提取 情报检索 自然语言处理 机器学习 梅德林 工程类 建筑工程 哲学 认识论 法学 政治学
作者
Jigen Luo,Yang Yuan,Jianqiang Du,Qiang Shi,Wangping Xiong,Qiming Zheng
标识
DOI:10.1145/3573428.3573668
摘要

TCM texts are rich in evidence-based information, and a crucial step in knowledge mining is using high-tech tools to organize and store TCM texts in a systematic manner. Knowledge graphs are better suited to organizing and preserving the knowledge of TCM texts with complex relationships than typical databases are. Building high-quality knowledge maps requires accurate and efficient entity relationship extraction, and completely automated entity relationship extraction necessitates the creation of a sizable amount of high-quality corpus data, which increases expenses and lowers productivity. Because the same entity can generate many relations in the joint extraction of TCM entity relations and there are insufficient corpus data, these issues must be addressed. The joint extraction model of TCM entity interactions proposed in this paper is based on deep learning and data augmentation. Using a multi-head selective bidirectional long and short-term memory network (multi-head-BILSTM), the relationship overlap problem is first solved, and the data is then enhanced using five mechanisms: entity replacement, random addition, random deletion, random replacement, and integrated enhancement. We quantitatively assess the benefits and drawbacks of several relationship extraction algorithms as well as the performance improvements of TCM entity relationship joint extraction brought about by five alternative data augmentation mechanisms. In conclusion, our research has the potential to significantly enhance the efficiency of joint TCM entity relationship extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Who发布了新的文献求助10
5秒前
洛洛大方应助Who采纳,获得10
20秒前
30秒前
37秒前
热情依白应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
iii完成签到 ,获得积分10
1分钟前
1分钟前
Crh完成签到,获得积分10
1分钟前
Hands完成签到 ,获得积分10
1分钟前
洛洛大方应助Crh采纳,获得10
1分钟前
故意的洋葱关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
扯不开的封口膜完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
嗯哼应助科研通管家采纳,获得20
2分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
esther发布了新的文献求助30
4分钟前
微笑的铸海完成签到 ,获得积分10
4分钟前
zhiweiyan发布了新的文献求助10
4分钟前
4分钟前
haokeyan完成签到,获得积分10
4分钟前
嗯哼应助科研通管家采纳,获得20
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
4分钟前
123完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
Tia完成签到 ,获得积分10
5分钟前
5分钟前
无花果应助12123ray采纳,获得10
6分钟前
6分钟前
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307359
求助须知:如何正确求助?哪些是违规求助? 2941022
关于积分的说明 8500166
捐赠科研通 2615407
什么是DOI,文献DOI怎么找? 1428836
科研通“疑难数据库(出版商)”最低求助积分说明 663581
邀请新用户注册赠送积分活动 648443