亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Tiny Accelerator for Mixed-Bit Sparse CNN Based on Efficient Fetch Method of SIMO SPad

计算机科学 计算 卷积神经网络 算法 人工神经网络 计算机硬件 并行计算 人工智能
作者
Xianghong Hu,Xuejiao Liu,Yu Liu,Haowei Zhang,Xijie Huang,Xihao Guan,Luhong Liang,Chi-Ying Tsui,Xiaoming Xiong,Kwang-Ting Cheng
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs [Institute of Electrical and Electronics Engineers]
卷期号:70 (8): 3079-3083
标识
DOI:10.1109/tcsii.2023.3257298
摘要

Convolution neural networks (CNNs) have been implemented with custom hardware on edge devices since its algorithms were successful in many artificial intelligence applications. Although lots of unstructured pruning and mix-bit quantization algorithms have been proposed to successfully compress CNNs, there are few hardware accelerators which can support both sparse and mix-bit CNNs. Besides, sparse matrix computation consumes lots of hardware resources such as registers or BRAM to fetch the needed input activations into processing element (PE). This brief presents a tiny accelerator for mixed-bit sparse CNNs featuring a novel scheme of single vector-based compressed sparse filter (CSF) method and single input multiple output scratch pad (SIMO SPad) to effectively compress weight and fetch the needed input activation. SIMO SPad is shared by multiple PEs, which saves 13.34% CLB LUTs, 46.24% CLB Registers. Furthermore, the accelerator supports mixed-bit sparse computation to obtain better accuracy and performance. When tested on VGG16, compared with 8-bit non-sparsity baselines, the performance of mixed-bit sparsity on Cifar10 and ImageNet improved by $4.85\times $ and $3.33\times $ , respectively, with small accuracy decrease degradation. Compared to state-of-the-art accelerators, the accelerator achieves $1.40\times $ to $2.98\times $ greater DSP efficiency, and offers $1.91\times $ greater energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wohohoho完成签到,获得积分10
20秒前
occol完成签到,获得积分10
31秒前
雾蓝完成签到,获得积分10
1分钟前
pluto应助陈老板采纳,获得10
1分钟前
专注半烟完成签到 ,获得积分10
1分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
JamesPei应助yoyo采纳,获得10
2分钟前
2分钟前
CipherSage应助heysiri采纳,获得10
2分钟前
2分钟前
简单的安珊完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
yoyo发布了新的文献求助10
3分钟前
3分钟前
3分钟前
wangqinlei完成签到 ,获得积分10
3分钟前
今后应助Man采纳,获得10
3分钟前
cdercder应助加菲丰丰采纳,获得30
3分钟前
科目三应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
凩飒应助加菲丰丰采纳,获得30
4分钟前
5分钟前
5分钟前
sxt发布了新的文献求助10
5分钟前
科研通AI40应助sxt采纳,获得10
5分钟前
ling361完成签到,获得积分10
5分钟前
隐形曼青应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
科研小白发布了新的文献求助10
6分钟前
6分钟前
Lucas应助科研小白采纳,获得10
6分钟前
6分钟前
我有乖乖吃饭完成签到,获得积分10
7分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471419
求助须知:如何正确求助?哪些是违规求助? 3064487
关于积分的说明 9088196
捐赠科研通 2755124
什么是DOI,文献DOI怎么找? 1511803
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698473