A Tiny Accelerator for Mixed-Bit Sparse CNN Based on Efficient Fetch Method of SIMO SPad

计算机科学 计算 卷积神经网络 算法 人工神经网络 计算机硬件 并行计算 人工智能
作者
Xianghong Hu,Xuejiao Liu,Yu Liu,Haowei Zhang,Xijie Huang,Xihao Guan,Luhong Liang,Chi-Ying Tsui,Xiaoming Xiong,Kwang-Ting Cheng
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs [Institute of Electrical and Electronics Engineers]
卷期号:70 (8): 3079-3083
标识
DOI:10.1109/tcsii.2023.3257298
摘要

Convolution neural networks (CNNs) have been implemented with custom hardware on edge devices since its algorithms were successful in many artificial intelligence applications. Although lots of unstructured pruning and mix-bit quantization algorithms have been proposed to successfully compress CNNs, there are few hardware accelerators which can support both sparse and mix-bit CNNs. Besides, sparse matrix computation consumes lots of hardware resources such as registers or BRAM to fetch the needed input activations into processing element (PE). This brief presents a tiny accelerator for mixed-bit sparse CNNs featuring a novel scheme of single vector-based compressed sparse filter (CSF) method and single input multiple output scratch pad (SIMO SPad) to effectively compress weight and fetch the needed input activation. SIMO SPad is shared by multiple PEs, which saves 13.34% CLB LUTs, 46.24% CLB Registers. Furthermore, the accelerator supports mixed-bit sparse computation to obtain better accuracy and performance. When tested on VGG16, compared with 8-bit non-sparsity baselines, the performance of mixed-bit sparsity on Cifar10 and ImageNet improved by $4.85\times $ and $3.33\times $ , respectively, with small accuracy decrease degradation. Compared to state-of-the-art accelerators, the accelerator achieves $1.40\times $ to $2.98\times $ greater DSP efficiency, and offers $1.91\times $ greater energy efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gwh完成签到,获得积分10
1秒前
IDneverd发布了新的文献求助10
1秒前
稚生w完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
5秒前
tang发布了新的文献求助10
6秒前
6秒前
高高的远山完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
脑洞疼应助研友_nVNBVn采纳,获得10
8秒前
追寻师完成签到 ,获得积分10
8秒前
开朗醉波完成签到,获得积分10
8秒前
wenbin发布了新的文献求助10
8秒前
杏仁酥完成签到 ,获得积分10
8秒前
晴空万里完成签到 ,获得积分10
8秒前
不知为不知完成签到,获得积分10
9秒前
NEW完成签到,获得积分10
10秒前
10秒前
11秒前
12321完成签到,获得积分10
11秒前
槿裡完成签到 ,获得积分10
14秒前
17秒前
小杜完成签到,获得积分10
17秒前
好的昂完成签到,获得积分10
17秒前
务实鞅完成签到 ,获得积分10
18秒前
1233完成签到,获得积分10
19秒前
Kidmuse完成签到,获得积分10
21秒前
21秒前
多肉丸子完成签到,获得积分10
22秒前
郑大小神龙完成签到,获得积分10
22秒前
熬夜波比应助flora采纳,获得10
22秒前
汤圆完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
小瑀完成签到,获得积分10
24秒前
陈曦读研版完成签到 ,获得积分20
24秒前
25秒前
Qi完成签到 ,获得积分10
25秒前
邓布利多博完成签到,获得积分10
25秒前
时2完成签到,获得积分10
26秒前
huenguyenvan完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664825
求助须知:如何正确求助?哪些是违规求助? 4870916
关于积分的说明 15108980
捐赠科研通 4823643
什么是DOI,文献DOI怎么找? 2582450
邀请新用户注册赠送积分活动 1536469
关于科研通互助平台的介绍 1495006