亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neural-network solutions to stochastic reaction networks

自回归模型 常微分方程 人工神经网络 联合概率分布 计算机科学 主方程 随机微分方程 状态空间 概率分布 应用数学 数学优化 微分方程 数学 人工智能 物理 统计 数学分析 量子 量子力学
作者
Ying Tang,Jiayu Weng,Pan Zhang
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (4): 376-385 被引量:19
标识
DOI:10.1038/s42256-023-00632-6
摘要

The stochastic reaction network in which chemical species evolve through a set of reactions is widely used to model stochastic processes in physics, chemistry and biology. To characterize the evolving joint probability distribution in the state space of species counts requires solving a system of ordinary differential equations, the chemical master equation, where the size of the counting state space increases exponentially with the type of species. This makes it challenging to investigate the stochastic reaction network. Here we propose a machine learning approach using a variational autoregressive network to solve the chemical master equation. Training the autoregressive network employs the policy gradient algorithm in the reinforcement learning framework, which does not require any data simulated previously by another method. In contrast with simulating single trajectories, this approach tracks the time evolution of the joint probability distribution, and supports direct sampling of configurations and computing their normalized joint probabilities. We apply the approach to representative examples in physics and biology, and demonstrate that it accurately generates the probability distribution over time. The variational autoregressive network exhibits plasticity in representing the multimodal distribution, cooperates with the conservation law, enables time-dependent reaction rates and is efficient for high-dimensional reaction networks, allowing a flexible upper count limit. The results suggest a general approach to study stochastic reaction networks based on modern machine learning. Stochastic reaction networks involve solving a system of ordinary differential equations, which becomes challenging as the number of reactive species grows, but a new approach based on evolving a variational autoregressive neural network provides an efficient way to track time evolution of the joint probability distribution for general reaction networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
17秒前
23秒前
量子星尘发布了新的文献求助10
35秒前
研友_拓跋戾完成签到,获得积分10
40秒前
蛙蛙完成签到,获得积分10
40秒前
Criminology34应助科研通管家采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
52秒前
52秒前
王一博完成签到,获得积分10
1分钟前
王一博发布了新的文献求助10
1分钟前
1分钟前
1分钟前
简单慕凝发布了新的文献求助100
1分钟前
Fairy完成签到,获得积分10
1分钟前
1分钟前
wwrz完成签到,获得积分20
1分钟前
动听的涵山完成签到,获得积分10
1分钟前
打打应助wwrz采纳,获得30
1分钟前
独特的忆彤完成签到 ,获得积分10
1分钟前
1分钟前
吕懿发布了新的文献求助30
2分钟前
路漫漫其修远兮完成签到 ,获得积分10
2分钟前
吕懿完成签到,获得积分10
2分钟前
meeteryu完成签到,获得积分10
2分钟前
2分钟前
11112321321完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
漂亮夏兰完成签到 ,获得积分10
3分钟前
4分钟前
小宋发布了新的文献求助10
4分钟前
4分钟前
coraline26完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
忧郁菲鹰发布了新的文献求助30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723941
求助须知:如何正确求助?哪些是违规求助? 5282860
关于积分的说明 15299423
捐赠科研通 4872163
什么是DOI,文献DOI怎么找? 2616606
邀请新用户注册赠送积分活动 1566494
关于科研通互助平台的介绍 1523352