亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neural-network solutions to stochastic reaction networks

自回归模型 常微分方程 人工神经网络 联合概率分布 计算机科学 主方程 随机微分方程 状态空间 概率分布 应用数学 数学优化 微分方程 数学 人工智能 物理 统计 数学分析 量子 量子力学
作者
Ying Tang,Jiayu Weng,Pan Zhang
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (4): 376-385 被引量:19
标识
DOI:10.1038/s42256-023-00632-6
摘要

The stochastic reaction network in which chemical species evolve through a set of reactions is widely used to model stochastic processes in physics, chemistry and biology. To characterize the evolving joint probability distribution in the state space of species counts requires solving a system of ordinary differential equations, the chemical master equation, where the size of the counting state space increases exponentially with the type of species. This makes it challenging to investigate the stochastic reaction network. Here we propose a machine learning approach using a variational autoregressive network to solve the chemical master equation. Training the autoregressive network employs the policy gradient algorithm in the reinforcement learning framework, which does not require any data simulated previously by another method. In contrast with simulating single trajectories, this approach tracks the time evolution of the joint probability distribution, and supports direct sampling of configurations and computing their normalized joint probabilities. We apply the approach to representative examples in physics and biology, and demonstrate that it accurately generates the probability distribution over time. The variational autoregressive network exhibits plasticity in representing the multimodal distribution, cooperates with the conservation law, enables time-dependent reaction rates and is efficient for high-dimensional reaction networks, allowing a flexible upper count limit. The results suggest a general approach to study stochastic reaction networks based on modern machine learning. Stochastic reaction networks involve solving a system of ordinary differential equations, which becomes challenging as the number of reactive species grows, but a new approach based on evolving a variational autoregressive neural network provides an efficient way to track time evolution of the joint probability distribution for general reaction networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hairgod完成签到,获得积分10
12秒前
1分钟前
小谢完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
may发布了新的文献求助30
2分钟前
2分钟前
矢思然发布了新的文献求助10
3分钟前
lod完成签到,获得积分10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
zsmj23完成签到 ,获得积分0
3分钟前
量子星尘发布了新的文献求助10
4分钟前
nav完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
kmzzy完成签到,获得积分10
5分钟前
Sandy应助AliEmbark采纳,获得30
5分钟前
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
汉堡包应助科研通管家采纳,获得10
5分钟前
胡可完成签到 ,获得积分10
5分钟前
6分钟前
黄文霜发布了新的文献求助10
6分钟前
6分钟前
科目三应助黄文霜采纳,获得10
6分钟前
Yx发布了新的文献求助10
6分钟前
6分钟前
张琦完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
草木完成签到 ,获得积分20
6分钟前
6分钟前
7分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128693
捐赠科研通 3238333
什么是DOI,文献DOI怎么找? 1789703
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069