Neural-network solutions to stochastic reaction networks

自回归模型 常微分方程 人工神经网络 联合概率分布 计算机科学 主方程 随机微分方程 状态空间 概率分布 应用数学 数学优化 微分方程 数学 人工智能 物理 统计 数学分析 量子 量子力学
作者
Ying Tang,Jiayu Weng,Pan Zhang
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (4): 376-385 被引量:7
标识
DOI:10.1038/s42256-023-00632-6
摘要

The stochastic reaction network in which chemical species evolve through a set of reactions is widely used to model stochastic processes in physics, chemistry and biology. To characterize the evolving joint probability distribution in the state space of species counts requires solving a system of ordinary differential equations, the chemical master equation, where the size of the counting state space increases exponentially with the type of species. This makes it challenging to investigate the stochastic reaction network. Here we propose a machine learning approach using a variational autoregressive network to solve the chemical master equation. Training the autoregressive network employs the policy gradient algorithm in the reinforcement learning framework, which does not require any data simulated previously by another method. In contrast with simulating single trajectories, this approach tracks the time evolution of the joint probability distribution, and supports direct sampling of configurations and computing their normalized joint probabilities. We apply the approach to representative examples in physics and biology, and demonstrate that it accurately generates the probability distribution over time. The variational autoregressive network exhibits plasticity in representing the multimodal distribution, cooperates with the conservation law, enables time-dependent reaction rates and is efficient for high-dimensional reaction networks, allowing a flexible upper count limit. The results suggest a general approach to study stochastic reaction networks based on modern machine learning. Stochastic reaction networks involve solving a system of ordinary differential equations, which becomes challenging as the number of reactive species grows, but a new approach based on evolving a variational autoregressive neural network provides an efficient way to track time evolution of the joint probability distribution for general reaction networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bling发布了新的文献求助10
1秒前
1秒前
lofads发布了新的文献求助10
1秒前
残忆完成签到 ,获得积分10
1秒前
赘婿应助满眼星辰采纳,获得10
1秒前
万能图书馆应助JiahaoRao采纳,获得10
1秒前
2秒前
小白完成签到,获得积分10
2秒前
完美世界应助CLubiy采纳,获得10
2秒前
li发布了新的文献求助10
2秒前
善学以致用应助阿曼采纳,获得10
3秒前
3秒前
4秒前
多多少少忖测的情应助csy采纳,获得10
4秒前
多多少少忖测的情应助csy采纳,获得10
4秒前
123完成签到 ,获得积分10
4秒前
浪里小白龙完成签到,获得积分10
4秒前
李健的小迷弟应助洪对对采纳,获得10
5秒前
5秒前
111完成签到 ,获得积分10
5秒前
5秒前
慕青应助Felix采纳,获得10
5秒前
申小萌完成签到,获得积分10
6秒前
褚海安发布了新的文献求助10
6秒前
6秒前
时冬冬应助Catherine采纳,获得10
7秒前
慕青应助丫丫采纳,获得10
7秒前
7秒前
bliyaa发布了新的文献求助10
8秒前
CipherSage应助Evol采纳,获得10
9秒前
9秒前
Belinda完成签到 ,获得积分10
9秒前
机密塔完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
yl发布了新的文献求助10
12秒前
酷酷的书包完成签到,获得积分20
12秒前
yangz发布了新的文献求助10
12秒前
yjn发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155301
求助须知:如何正确求助?哪些是违规求助? 2806177
关于积分的说明 7868353
捐赠科研通 2464650
什么是DOI,文献DOI怎么找? 1311885
科研通“疑难数据库(出版商)”最低求助积分说明 629777
版权声明 601880