Neural-network solutions to stochastic reaction networks

自回归模型 常微分方程 人工神经网络 联合概率分布 计算机科学 主方程 随机微分方程 状态空间 概率分布 应用数学 数学优化 微分方程 数学 人工智能 物理 统计 数学分析 量子 量子力学
作者
Ying Tang,Jiayu Weng,Pan Zhang
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (4): 376-385 被引量:19
标识
DOI:10.1038/s42256-023-00632-6
摘要

The stochastic reaction network in which chemical species evolve through a set of reactions is widely used to model stochastic processes in physics, chemistry and biology. To characterize the evolving joint probability distribution in the state space of species counts requires solving a system of ordinary differential equations, the chemical master equation, where the size of the counting state space increases exponentially with the type of species. This makes it challenging to investigate the stochastic reaction network. Here we propose a machine learning approach using a variational autoregressive network to solve the chemical master equation. Training the autoregressive network employs the policy gradient algorithm in the reinforcement learning framework, which does not require any data simulated previously by another method. In contrast with simulating single trajectories, this approach tracks the time evolution of the joint probability distribution, and supports direct sampling of configurations and computing their normalized joint probabilities. We apply the approach to representative examples in physics and biology, and demonstrate that it accurately generates the probability distribution over time. The variational autoregressive network exhibits plasticity in representing the multimodal distribution, cooperates with the conservation law, enables time-dependent reaction rates and is efficient for high-dimensional reaction networks, allowing a flexible upper count limit. The results suggest a general approach to study stochastic reaction networks based on modern machine learning. Stochastic reaction networks involve solving a system of ordinary differential equations, which becomes challenging as the number of reactive species grows, but a new approach based on evolving a variational autoregressive neural network provides an efficient way to track time evolution of the joint probability distribution for general reaction networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wei完成签到,获得积分10
刚刚
zhangj696完成签到,获得积分10
2秒前
科研助理发布了新的文献求助10
2秒前
提莫蘑菇完成签到,获得积分10
2秒前
Leila完成签到,获得积分10
3秒前
合适的自行车完成签到 ,获得积分10
3秒前
CodeCraft应助艺阳采纳,获得10
5秒前
机智的阿振完成签到,获得积分10
5秒前
LS完成签到,获得积分10
9秒前
神厨小福桂完成签到 ,获得积分10
10秒前
丰富的澜完成签到 ,获得积分10
10秒前
专一的砖头完成签到,获得积分20
11秒前
automan发布了新的文献求助20
12秒前
量子星尘发布了新的文献求助10
12秒前
陈陈要毕业完成签到 ,获得积分10
13秒前
忐忑的中心完成签到,获得积分10
13秒前
科研通AI6应助舒适的采波采纳,获得10
13秒前
谦让汝燕完成签到,获得积分10
14秒前
伶俐的千凡完成签到,获得积分10
14秒前
15秒前
15秒前
q1nzang完成签到 ,获得积分10
16秒前
李健应助xyzdmmm采纳,获得10
16秒前
春风送暖发布了新的文献求助20
18秒前
蝈蝈发布了新的文献求助10
19秒前
LYB完成签到 ,获得积分10
19秒前
automan完成签到,获得积分10
19秒前
edtaa完成签到 ,获得积分10
20秒前
ruby完成签到,获得积分10
20秒前
lr完成签到,获得积分20
23秒前
鹤川完成签到 ,获得积分10
24秒前
彩色完成签到,获得积分10
27秒前
希望天下0贩的0应助简单采纳,获得10
28秒前
大模型应助科研助理采纳,获得10
28秒前
超级灰狼完成签到 ,获得积分10
29秒前
哈利波特完成签到,获得积分10
29秒前
liuchang完成签到 ,获得积分10
30秒前
研友_VZG7GZ应助xyzdmmm采纳,获得10
30秒前
31秒前
HHH完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482688
求助须知:如何正确求助?哪些是违规求助? 4583423
关于积分的说明 14389513
捐赠科研通 4512664
什么是DOI,文献DOI怎么找? 2473166
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861