Innovative Inverse-Design Approach for On-Chip Computational Spectrometers: Enhanced Performance and Reliability

分光计 可靠性(半导体) 计算机科学 反向 光谱分辨率 成像光谱仪 电子工程 功率(物理) 光学 物理 工程类 数学 天文 谱线 几何学 量子力学
作者
Ang Li,Yifan Wu,Gongyuan Zhang,Chang Wang,Jijun He,Yaqi Shi,Zongyin Yang,Shilong Pan
出处
期刊:Engineering [Elsevier]
标识
DOI:10.1016/j.eng.2024.07.011
摘要

Computational spectrometers utilizing disordered structures have emerged as promising solutions for meeting the imperative demand for integrated spectrometers, offering high performance and improved resilience to fabrication variations and temperature fluctuations. However, the current computational spectrometers are impractical because they rely on a brute-force random design approach for disordered structures. This leads to an uncontrollable, non-reproducible, and suboptimal spectrometer performance. In this study, we revolutionize the existing paradigm by introducing a novel inverse design approach for computational spectrometers. By harnessing the power of inverse design, which has traditionally been applied to optimize single devices with simple performance, we successfully adapted it to optimize a complex system comprising multiple correlated components with intricate spectral responses. This approach can be applied to a wide range of structures. We validated this by realizing a spectrometer utilizing a new type of disordered structure based on interferometric effects that exhibits negligible loss and high sensitivity. For a given structure, our approach yielded a remarkable 12-times improvement in the spectral resolution and a four-fold reduction in the cross-correlation between the filters. The resulting spectrometer demonstrated reliable and reproducible performance with the precise determination of structural parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
4秒前
逐风给逐风的求助进行了留言
5秒前
科研通AI5应助灌饼采纳,获得30
5秒前
Owen应助Zzzzzzzzzzz采纳,获得10
6秒前
7秒前
8秒前
巫马秋寒应助笑点低可乐采纳,获得10
8秒前
xuex1完成签到,获得积分10
8秒前
情怀应助阳光的雁山采纳,获得10
10秒前
斯文败类应助jy采纳,获得10
10秒前
10秒前
日月轮回发布了新的文献求助10
11秒前
36456657应助木香采纳,获得10
12秒前
无花果应助ns采纳,获得30
12秒前
刘铭晨完成签到,获得积分10
12秒前
13秒前
YY发布了新的文献求助10
13秒前
Rrr发布了新的文献求助10
14秒前
学术蠕虫发布了新的文献求助10
14秒前
14秒前
miumiuka完成签到,获得积分10
15秒前
个性的薯片应助lyt采纳,获得20
17秒前
sweetbearm应助寒涛先生采纳,获得10
18秒前
wanci应助YY采纳,获得10
19秒前
19秒前
20秒前
20秒前
21秒前
HC完成签到 ,获得积分10
22秒前
姚姚的赵赵完成签到,获得积分10
22秒前
JamesPei应助大豪子采纳,获得30
23秒前
jy发布了新的文献求助10
23秒前
23秒前
陆靖易发布了新的文献求助10
23秒前
LQW完成签到,获得积分20
24秒前
25秒前
plant完成签到,获得积分10
25秒前
lyt完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808