FACEMUG: A Multimodal Generative and Fusion Framework for Local Facial Editing

计算机科学 生成语法 多通道交互 人机交互 人工智能 计算机视觉
作者
Wanglong Lu,Jikai Wang,Xiaogang Jin,Xianta Jiang,Hanli Zhao
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tvcg.2024.3434386
摘要

Existing facial editing methods have achieved remarkable results, yet they often fall short in supporting multimodal conditional local facial editing. One of the significant evidences is that their output image quality degrades dramatically after several iterations of incremental editing, as they do not support local editing. In this paper, we present a novel multimodal generative and fusion framework for globally-consistent local facial editing (FACEMUG) that can handle a wide range of input modalities and enable fine-grained and semantic manipulation while remaining unedited parts unchanged. Different modalities, including sketches, semantic maps, color maps, exemplar images, text, and attribute labels, are adept at conveying diverse conditioning details, and their combined synergy can provide more explicit guidance for the editing process. We thus integrate all modalities into a unified generative latent space to enable multimodal local facial edits. Specifically, a novel multimodal feature fusion mechanism is proposed by utilizing multimodal aggregation and style fusion blocks to fuse facial priors and multimodalities in both latent and feature spaces. We further introduce a novel self-supervised latent warping algorithm to rectify misaligned facial features, efficiently transferring the pose of the edited image to the given latent codes. We evaluate our FACEMUG through extensive experiments and comparisons to state-of-the-art (SOTA) methods. The results demonstrate the superiority of FACEMUG in terms of editing quality, flexibility, and semantic control, making it a promising solution for a wide range of local facial editing tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
迷你的听荷完成签到,获得积分10
1秒前
1秒前
Miller应助克瑞吉海绵宝宝采纳,获得20
2秒前
2秒前
蓝色条纹衫完成签到 ,获得积分10
3秒前
Hedy发布了新的文献求助30
5秒前
爱吃百香果完成签到,获得积分20
5秒前
浮光发布了新的文献求助10
5秒前
5秒前
6秒前
CL完成签到,获得积分10
7秒前
7秒前
8秒前
潇洒的初柔关注了科研通微信公众号
9秒前
量子星尘发布了新的文献求助30
9秒前
科研通AI5应助大黄采纳,获得10
10秒前
10秒前
我是老大应助蝌蚪采纳,获得10
11秒前
lxlcx发布了新的文献求助10
12秒前
13秒前
13秒前
大力黑米完成签到 ,获得积分10
13秒前
豆子发布了新的文献求助10
14秒前
16秒前
fshadow完成签到,获得积分10
17秒前
烛黎完成签到,获得积分10
17秒前
无花果应助兰天采纳,获得10
18秒前
科研通AI5应助超酷的柠檬采纳,获得10
19秒前
en发布了新的文献求助10
19秒前
早点睡觉完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
从透彻的眼睛看见勇气完成签到,获得积分10
20秒前
crazy发布了新的文献求助10
20秒前
22秒前
Cyrus完成签到,获得积分10
23秒前
23秒前
keyanlv完成签到,获得积分10
24秒前
科研通AI5应助洁123456789012采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667773
求助须知:如何正确求助?哪些是违规求助? 3226242
关于积分的说明 9768746
捐赠科研通 2936222
什么是DOI,文献DOI怎么找? 1608301
邀请新用户注册赠送积分活动 759615
科研通“疑难数据库(出版商)”最低求助积分说明 735407