A Multi-Perspective Self-Supervised Generative Adversarial Network for FS to FFPE Stain Transfer

计算机科学 人工智能 一致性(知识库) 模式识别(心理学) 图像质量 透视图(图形) 图像(数学) 计算机视觉
作者
Yiyang Lin,Yifeng Wang,Zijie Fang,Zexin Li,Xianchao Guan,Danling Jiang,Yongbing Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (2): 774-788 被引量:1
标识
DOI:10.1109/tmi.2024.3460795
摘要

In clinical practice, frozen section (FS) images can be utilized to obtain the immediate pathological results of the patients in operation due to their fast production speed. However, compared with the formalin-fixed and paraffin-embedded (FFPE) images, the FS images greatly suffer from poor quality. Thus, it is of great significance to transfer the FS image to the FFPE one, which enables pathologists to observe high-quality images in operation. However, obtaining the paired FS and FFPE images is quite hard, so it is difficult to obtain accurate results using supervised methods. Apart from this, the FS to FFPE stain transfer faces many challenges. Firstly, the number and position of nuclei scattered throughout the image are hard to maintain during the transfer process. Secondly, transferring the blurry FS images to the clear FFPE ones is quite challenging. Thirdly, compared with the center regions of each patch, the edge regions are harder to transfer. To overcome these problems, a multi-perspective self-supervised GAN, incorporating three auxiliary tasks, is proposed to improve the performance of FS to FFPE stain transfer. Concretely, a nucleus consistency constraint is designed to enable the high-fidelity of nuclei, an FFPE guided image deblurring is proposed for improving the clarity, and a multi-field-of-view consistency constraint is designed to better generate the edge regions. Objective indicators and pathologists' evaluation for experiments on the five datasets across different countries have demonstrated the effectiveness of our method. In addition, the validation in the downstream task of microsatellite instability prediction has also proved the performance improvement by transferring the FS images to FFPE ones. Our code link is https://github.com/linyiyang98/Self-Supervised-FS2FFPE.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
2秒前
火羊宝发布了新的文献求助10
2秒前
包容诗槐完成签到,获得积分10
2秒前
自觉博超发布了新的文献求助10
2秒前
SciGPT应助wang采纳,获得10
2秒前
不退完成签到,获得积分10
3秒前
XCL发布了新的文献求助10
3秒前
Moxley完成签到,获得积分10
3秒前
着急的绿兰完成签到,获得积分10
3秒前
Driscoll发布了新的文献求助20
3秒前
3秒前
4秒前
奥里给发布了新的文献求助10
4秒前
科研通AI6应助苏苏苏采纳,获得30
4秒前
zhangzhang发布了新的文献求助10
5秒前
给我勇气关注了科研通微信公众号
6秒前
Dawn完成签到,获得积分10
6秒前
贪玩南琴发布了新的文献求助10
7秒前
FashionBoy应助小旭采纳,获得30
7秒前
7秒前
科目三应助杜阿妹采纳,获得10
7秒前
8秒前
belle发布了新的文献求助20
8秒前
加百莉发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
wang完成签到,获得积分10
10秒前
Orange应助kkkkkkz2采纳,获得10
10秒前
10秒前
奥里给完成签到,获得积分10
11秒前
科研通AI6应助朱猪侠采纳,获得10
12秒前
13秒前
勤劳唇彩发布了新的文献求助10
13秒前
天天快乐应助莫默采纳,获得10
14秒前
pyx发布了新的文献求助30
14秒前
philo发布了新的文献求助10
14秒前
栖迟完成签到 ,获得积分10
16秒前
16秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442461
求助须知:如何正确求助?哪些是违规求助? 4552718
关于积分的说明 14238070
捐赠科研通 4473972
什么是DOI,文献DOI怎么找? 2451801
邀请新用户注册赠送积分活动 1442690
关于科研通互助平台的介绍 1418574