亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-Perspective Self-Supervised Generative Adversarial Network for FS to FFPE Stain Transfer

计算机科学 人工智能 一致性(知识库) 模式识别(心理学) 图像质量 透视图(图形) 图像(数学) 计算机视觉
作者
Yiyang Lin,Yifeng Wang,Zijie Fang,Zexin Li,Xianchao Guan,Danling Jiang,Yongbing Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3460795
摘要

In clinical practice, frozen section (FS) images can be utilized to obtain the immediate pathological results of the patients in operation due to their fast production speed. However, compared with the formalin-fixed and paraffin-embedded (FFPE) images, the FS images greatly suffer from poor quality. Thus, it is of great significance to transfer the FS image to the FFPE one, which enables pathologists to observe high-quality images in operation. However, obtaining the paired FS and FFPE images is quite hard, so it is difficult to obtain accurate results using supervised methods. Apart from this, the FS to FFPE stain transfer faces many challenges. Firstly, the number and position of nuclei scattered throughout the image are hard to maintain during the transfer process. Secondly, transferring the blurry FS images to the clear FFPE ones is quite challenging. Thirdly, compared with the center regions of each patch, the edge regions are harder to transfer. To overcome these problems, a multi-perspective self-supervised GAN, incorporating three auxiliary tasks, is proposed to improve the performance of FS to FFPE stain transfer. Concretely, a nucleus consistency constraint is designed to enable the high-fidelity of nuclei, an FFPE guided image deblurring is proposed for improving the clarity, and a multi-field-of-view consistency constraint is designed to better generate the edge regions. Objective indicators and pathologists' evaluation for experiments on the five datasets across different countries have demonstrated the effectiveness of our method. In addition, the validation in the downstream task of microsatellite instability prediction has also proved the performance improvement by transferring the FS images to FFPE ones. Our code link is https://github.com/linyiyang98/Self-Supervised-FS2FFPE.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助Reny采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
6秒前
7秒前
吾系渣渣辉完成签到 ,获得积分10
9秒前
兔葵燕麦完成签到 ,获得积分10
11秒前
12秒前
Reny发布了新的文献求助10
13秒前
momo发布了新的文献求助10
18秒前
CipherSage应助Reny采纳,获得10
19秒前
22秒前
32秒前
42秒前
努力加油煤老八完成签到 ,获得积分10
49秒前
56秒前
1分钟前
1分钟前
汉堡包应助兼听则明采纳,获得10
1分钟前
MhanM完成签到,获得积分10
1分钟前
ddd完成签到,获得积分10
1分钟前
1分钟前
边曦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
2分钟前
cessy完成签到,获得积分10
2分钟前
2分钟前
充电宝应助周冬华采纳,获得10
2分钟前
大方易巧完成签到 ,获得积分10
2分钟前
2分钟前
一只橘子完成签到 ,获得积分10
2分钟前
2分钟前
Suzy关注了科研通微信公众号
2分钟前
清爽夜雪完成签到,获得积分10
2分钟前
兼听则明发布了新的文献求助10
2分钟前
3分钟前
大薯条完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413361
求助须知:如何正确求助?哪些是违规求助? 3015651
关于积分的说明 8871610
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482234
科研通“疑难数据库(出版商)”最低求助积分说明 685159
邀请新用户注册赠送积分活动 679944