已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Multi-Perspective Self-Supervised Generative Adversarial Network for FS to FFPE Stain Transfer

计算机科学 人工智能 一致性(知识库) 模式识别(心理学) 图像质量 透视图(图形) 图像(数学) 计算机视觉
作者
Yiyang Lin,Yifeng Wang,Zijie Fang,Zexin Li,Xianchao Guan,Danling Jiang,Yongbing Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (2): 774-788 被引量:1
标识
DOI:10.1109/tmi.2024.3460795
摘要

In clinical practice, frozen section (FS) images can be utilized to obtain the immediate pathological results of the patients in operation due to their fast production speed. However, compared with the formalin-fixed and paraffin-embedded (FFPE) images, the FS images greatly suffer from poor quality. Thus, it is of great significance to transfer the FS image to the FFPE one, which enables pathologists to observe high-quality images in operation. However, obtaining the paired FS and FFPE images is quite hard, so it is difficult to obtain accurate results using supervised methods. Apart from this, the FS to FFPE stain transfer faces many challenges. Firstly, the number and position of nuclei scattered throughout the image are hard to maintain during the transfer process. Secondly, transferring the blurry FS images to the clear FFPE ones is quite challenging. Thirdly, compared with the center regions of each patch, the edge regions are harder to transfer. To overcome these problems, a multi-perspective self-supervised GAN, incorporating three auxiliary tasks, is proposed to improve the performance of FS to FFPE stain transfer. Concretely, a nucleus consistency constraint is designed to enable the high-fidelity of nuclei, an FFPE guided image deblurring is proposed for improving the clarity, and a multi-field-of-view consistency constraint is designed to better generate the edge regions. Objective indicators and pathologists' evaluation for experiments on the five datasets across different countries have demonstrated the effectiveness of our method. In addition, the validation in the downstream task of microsatellite instability prediction has also proved the performance improvement by transferring the FS images to FFPE ones. Our code link is https://github.com/linyiyang98/Self-Supervised-FS2FFPE.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuzi完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
三年六班李子明完成签到 ,获得积分10
4秒前
华仔应助Innogen采纳,获得10
8秒前
miaomiao123完成签到 ,获得积分10
12秒前
13秒前
天真的枕头完成签到,获得积分10
13秒前
Thi完成签到,获得积分10
16秒前
Lucas应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
浮浮世世应助科研通管家采纳,获得30
18秒前
浮浮世世应助科研通管家采纳,获得30
19秒前
fjkssadjk完成签到,获得积分10
19秒前
Thi发布了新的文献求助10
20秒前
宝剑葫芦完成签到 ,获得积分10
24秒前
26秒前
田様应助exosome采纳,获得10
27秒前
Benjamin完成签到 ,获得积分10
28秒前
28秒前
下一周完成签到,获得积分10
32秒前
李颜龙完成签到,获得积分10
33秒前
qqzone发布了新的文献求助10
33秒前
ay发布了新的文献求助20
34秒前
托塔大王完成签到,获得积分10
39秒前
Sieg完成签到 ,获得积分10
43秒前
43秒前
43秒前
47秒前
49秒前
小白应助猪猪侠采纳,获得10
50秒前
古惑仔发布了新的文献求助10
51秒前
52秒前
鸣蜩十三发布了新的文献求助10
54秒前
13656479046完成签到,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595590
求助须知:如何正确求助?哪些是违规求助? 4680876
关于积分的说明 14817799
捐赠科研通 4650797
什么是DOI,文献DOI怎么找? 2535516
邀请新用户注册赠送积分活动 1503487
关于科研通互助平台的介绍 1469726