已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Behavior Recommendation with Personalized Directed Acyclic Behavior Graphs

有向无环图 计算机科学 计算生物学 生物 算法
作者
Xi Zhu,Fake Lin,Ziwei Zhao,Tong Xu,Xiangyu Zhao,Zikai Yin,Xueying Li,Enhong Chen
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
被引量:1
标识
DOI:10.1145/3696417
摘要

A well-developed recommendation system can not only leverage multi-typed interactions (such as page view, add-to-cart, and purchase) to better identify user preferences, but also demonstrate high performance, low complexity, and strong interpretability. However, many existing solutions for multi-behavior recommendation fall short of intuitive modeling of real-world scenarios, leading to overly complex models with massive parameters and cumbersome components. In particular, they share two critical limitations: (1) Some pioneering models are built upon the strict assumption of cascade effects across behaviors, which contradicts multifarious behavior paths in practical applications. (2) Existing approaches fail to explicitly capture the unique idiosyncrasies of users and even neglect the inherent nature of items involved in the multi-behavior interactions. To this end, we propose a novel Directed Acyclic Graph Convolutional Network (DA-GCN) for the multi-behavior recommendation task. Specifically, we pinpoint the partial order relations within the monotonic behavior chain and extend it to personalized directed acyclic behavior graphs to exploit behavior dependencies. Then, a GCN-based directed edge encoder is employed to distill rich collaborative signals embodied by each directed edge. In light of the information flows over the directed acyclic structure, we propose an attentive aggregation module to gather messages from all potential antecedent behaviors, representing distinct perspectives to understand the terminated behavior. Thus, we obtain comprehensive representations for the follow-up behavior through learnable distributions over its preceding behaviors, explicitly reflecting personalized interactive patterns of users and underlying properties of items simultaneously. Finally, we design a customized multi-task learning objective for flexible joint optimization. Extensive experiments on public benchmarking datasets fully demonstrate the superiority of DA-GCN with significant performance improvement and computational efficiency over a wide range of state-of-the-art methods. Our code is available at https://github.com/xizhu1022/DA-GCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaochenyu完成签到,获得积分10
1秒前
7秒前
悄悄拔尖儿完成签到 ,获得积分10
8秒前
微笑的小霸王完成签到,获得积分10
9秒前
10秒前
酷波er应助科研通管家采纳,获得10
11秒前
喝可乐的萝卜兔完成签到 ,获得积分10
11秒前
浅忆完成签到 ,获得积分10
12秒前
tianlongli完成签到,获得积分10
12秒前
14秒前
自信的访云完成签到,获得积分10
15秒前
16秒前
传奇3应助仲滋滋采纳,获得10
17秒前
萧仲发布了新的文献求助10
17秒前
SHD完成签到 ,获得积分10
17秒前
17秒前
tianlongli发布了新的文献求助10
18秒前
农夫完成签到,获得积分10
18秒前
陶12345完成签到,获得积分10
19秒前
release枫完成签到,获得积分10
20秒前
小巧念露发布了新的文献求助10
21秒前
并肩于雪山之巅完成签到 ,获得积分10
22秒前
农夫发布了新的文献求助10
22秒前
发发完成签到,获得积分10
23秒前
海与猫完成签到 ,获得积分10
24秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
xr完成签到 ,获得积分10
26秒前
萧仲完成签到,获得积分10
26秒前
刘雪完成签到 ,获得积分10
26秒前
仲滋滋发布了新的文献求助10
28秒前
羞涩的傲菡完成签到,获得积分10
29秒前
金蛋蛋完成签到 ,获得积分10
30秒前
StonesKing完成签到,获得积分20
30秒前
科研花完成签到 ,获得积分10
32秒前
苹果颖完成签到,获得积分10
32秒前
Lorain发布了新的文献求助10
33秒前
Jasper应助purplelove采纳,获得10
36秒前
科研通AI2S应助StonesKing采纳,获得10
37秒前
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956962
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11111001
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234