亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Behavior Recommendation with Personalized Directed Acyclic Behavior Graphs

有向无环图 计算机科学 计算生物学 生物 算法
作者
Xi Zhu,Fake Lin,Ziwei Zhao,Tong Xu,Xiangyu Zhao,Zikai Yin,Xueying Li,Enhong Chen
出处
期刊:ACM Transactions on Information Systems
标识
DOI:10.1145/3696417
摘要

A well-developed recommendation system can not only leverage multi-typed interactions (such as page view, add-to-cart, and purchase) to better identify user preferences, but also demonstrate high performance, low complexity, and strong interpretability. However, many existing solutions for multi-behavior recommendation fall short of intuitive modeling of real-world scenarios, leading to overly complex models with massive parameters and cumbersome components. In particular, they share two critical limitations: (1) Some pioneering models are built upon the strict assumption of cascade effects across behaviors, which contradicts multifarious behavior paths in practical applications. (2) Existing approaches fail to explicitly capture the unique idiosyncrasies of users and even neglect the inherent nature of items involved in the multi-behavior interactions. To this end, we propose a novel Directed Acyclic Graph Convolutional Network (DA-GCN) for the multi-behavior recommendation task. Specifically, we pinpoint the partial order relations within the monotonic behavior chain and extend it to personalized directed acyclic behavior graphs to exploit behavior dependencies. Then, a GCN-based directed edge encoder is employed to distill rich collaborative signals embodied by each directed edge. In light of the information flows over the directed acyclic structure, we propose an attentive aggregation module to gather messages from all potential antecedent behaviors, representing distinct perspectives to understand the terminated behavior. Thus, we obtain comprehensive representations for the follow-up behavior through learnable distributions over its preceding behaviors, explicitly reflecting personalized interactive patterns of users and underlying properties of items simultaneously. Finally, we design a customized multi-task learning objective for flexible joint optimization. Extensive experiments on public benchmarking datasets fully demonstrate the superiority of DA-GCN with significant performance improvement and computational efficiency over a wide range of state-of-the-art methods. Our code is available at https://github.com/xizhu1022/DA-GCN .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jadedew完成签到,获得积分10
1秒前
淡然老头完成签到 ,获得积分10
5秒前
梦潜完成签到,获得积分10
6秒前
6秒前
6秒前
ffff完成签到 ,获得积分10
9秒前
Ava应助优雅的听兰采纳,获得10
10秒前
文献猪发布了新的文献求助10
12秒前
乐乐应助梦潜采纳,获得10
12秒前
余念安完成签到 ,获得积分10
16秒前
17秒前
20秒前
22秒前
王贝贝发布了新的文献求助10
25秒前
文献猪完成签到 ,获得积分10
28秒前
celine发布了新的文献求助10
28秒前
传奇3应助清逸采纳,获得10
31秒前
靓丽衫完成签到 ,获得积分10
33秒前
陨落星辰完成签到 ,获得积分10
35秒前
38秒前
努力加油煤老八完成签到 ,获得积分10
42秒前
43秒前
zxcsdfa应助Hayat采纳,获得50
44秒前
51秒前
51秒前
53秒前
后会无期完成签到,获得积分10
54秒前
芋头发布了新的文献求助10
56秒前
celine发布了新的文献求助10
56秒前
乐乐应助VDC采纳,获得10
57秒前
58秒前
wdd完成签到 ,获得积分10
59秒前
David完成签到 ,获得积分10
1分钟前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
爆米花应助幽默的老师采纳,获得10
1分钟前
TheaGao完成签到 ,获得积分10
1分钟前
光亮千易完成签到,获得积分10
1分钟前
田様应助yaoyao想毕业采纳,获得10
1分钟前
LYL完成签到,获得积分10
1分钟前
李健应助巨型肥猫采纳,获得10
1分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463583
求助须知:如何正确求助?哪些是违规求助? 3056944
关于积分的说明 9054846
捐赠科研通 2746912
什么是DOI,文献DOI怎么找? 1507148
科研通“疑难数据库(出版商)”最低求助积分说明 696405
邀请新用户注册赠送积分活动 695916