A simulation-based network analysis of intervention targets for adolescent depressive and anxiety symptoms

焦虑 干预(咨询) 心理学 临床心理学 抑郁症状 精神科
作者
Pengyuan Li,Ningning Huang,Xiaoman Yang,Yuan Fang,Zhiyan Chen
出处
期刊:Asian Journal of Psychiatry [Elsevier]
卷期号:99: 104152-104152
标识
DOI:10.1016/j.ajp.2024.104152
摘要

Although previous research has well explored central and bridge symptoms of mental health problems, little examined whether these symptoms can serve as effective targets for intervention practices. Based on the Ising model, this study constructed a network structure of depressive and anxiety symptoms. The NodeIdentifyR algorithm (NIRA) was used to simulate interventions within this network, examining the effects of alleviating or aggravating specific symptoms on the network's sum scores. In this study, a total of 15,569 participants were recruited from China (50.87 % females, Mage = 13.44; SD = 0.97). The Ising model demonstrated that "sad mood" had the highest expected influence, and "irritability" had the highest bridge expected influence. Alleviating interventions suggested that decreasing the symptom value of "nervousness" resulted in the greatest projected reduction in network symptom activation, which may be a potential target symptom for treatment. Aggravating interventions indicated that elevating the symptom value of "sad mood" had the most projected increase in network activation, which may be a potential target for prevention. Additionally, network structure indices (e.g., central or bridge symptoms) need to be interpreted with more caution as intervention targets, since they may not be exactly the same. These findings enriched the comprehension of the depressive and anxiety network in Chinese adolescents, offering valuable insights for designing effective interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助清圆527采纳,获得10
1秒前
打打应助勿庸采纳,获得10
1秒前
南佳发布了新的文献求助10
1秒前
2秒前
wbh完成签到,获得积分10
2秒前
咕咕咕发布了新的文献求助10
2秒前
2秒前
songsong完成签到,获得积分10
3秒前
3秒前
pearl关注了科研通微信公众号
3秒前
琴生完成签到,获得积分10
4秒前
4秒前
4秒前
Mtoc完成签到 ,获得积分10
4秒前
4秒前
跳跃老五完成签到 ,获得积分10
4秒前
4秒前
浪迹天涯完成签到,获得积分10
5秒前
包容的剑发布了新的文献求助10
5秒前
斯文的茹嫣完成签到,获得积分10
5秒前
义气笑容完成签到,获得积分10
5秒前
yufeng完成签到 ,获得积分10
6秒前
6秒前
Jenny完成签到,获得积分10
6秒前
6秒前
科研小小小白完成签到,获得积分10
7秒前
7秒前
小橙子完成签到 ,获得积分10
8秒前
9秒前
9秒前
福娃发布了新的文献求助10
9秒前
10秒前
达斯维完成签到,获得积分10
10秒前
浪迹天涯发布了新的文献求助10
10秒前
今后应助杜嘟嘟采纳,获得30
10秒前
11秒前
11秒前
清圆527完成签到,获得积分10
11秒前
JamesPei应助Zhong采纳,获得10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740