激进的
溴
光催化
光化学
催化作用
氧气
化学
还原(数学)
单电子还原
氧化还原
材料科学
无机化学
有机化学
物理化学
电化学
几何学
数学
电极
作者
Na Wen,Yingping Huang,Yuantao Yang,Hankun Wang,Decheng Wang,Haohao Chen,Qintian Peng,Xing Ying Kong,Liqun Ye
标识
DOI:10.1021/acscatal.4c02674
摘要
Hydroxyl radicals (•OH), recognized for their strong oxidizing ability, have garnered extensive attention in the field of photocatalysis. However, as a two-dimensional layered material widely employed in the field of environmental photocatalysis, BiOBr is incapable of catalyzing the generation of •OH, severely impeding its efficient degradation of organic pollutants. In this paper, we propose an efficient approach to generate •OH by expanding the spacing between crystal faces. Through the expansion of the {001} crystal face spacing of BiOBr, we synthesized ultrathin BiOBr-3 nanosheets with reduced bond energy of the Bi–Br bond, which favored the precipitation of Br– and the formation of bromine vacancies (BrV) under photocatalytic conditions, thereby promoting the efficient activation of molecular oxygen to generate •OH. The mechanism of photocatalytic reduction of molecular oxygen to hydroxyl radicals by three steps and three electrons was elucidated by in situ infrared spectroscopy and free radical probe experiments. Density functional theory calculations indicated that BiOBr-3 containing bromine vacancies significantly reduced the free energy barrier of *OOH, facilitating the formation of H2O2 and the reduction to •OH. In comparison to BiOBr without BrV, BiOBr-3 containing BrV demonstrated higher photoactivity toward degradation of triazine organic pollutants. The toxicity of the atrazine degradation solution was significantly reduced through the use of the toxicity estimation software tool and quantitative structure–activity relationship-based methods, as well as HepG2 cell viability detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI