已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fault diagnosis method of rolling bearing based on noise reduction enhanced multi-frequency scale network

计算机科学 断层(地质) 方位(导航) 判别式 噪音(视频) 降噪 振动 人工智能 模式识别(心理学) 还原(数学) 特征提取 声学 数学 物理 几何学 地震学 图像(数学) 地质学
作者
Dewen Kong,Hongfei Zhan,Junhe Yu,Rui Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 116014-116014 被引量:2
标识
DOI:10.1088/1361-6501/ad704b
摘要

Abstract Currently, data-driven deep learning methods have attracted much attention in the field of bearing fault diagnosis. Nonetheless, the existing rolling bearing fault methods suffer from insufficient fault feature extraction capability when dealing with variable operating conditions and strong noise environments. Therefore, this paper proposes a noise reduction enhanced multi-frequency scale network model-bidirectional long short-term memory network based on the collected bearing vibration data source. The noise embedded in the original vibration signals under different working conditions is effectively removed by designing an adaptive threshold noise reduction module. To comprehensively explore fault information within the vibration signals, a combined strategy of ordinary convolution and dilated convolution is proposed to cross-extract signal features across high, medium, and low multi-frequency scales. Simultaneously, a self-attention mechanism mode is integrated into the traditional channel attention mechanism to augment the model’s focus on multichannel and internal features, addressing the challenge of incomplete feature extraction under complex working conditions. Furthermore, the output mechanism is optimized and reacquired to grasp the intrinsic links between the combined fault characteristics. This process enhances the model’s discriminative power for early bearing faults and its generalization ability to accommodate data from diverse working conditions, thereby facilitating accurate diagnosis of bearing faults. Comparison and ablation experiments are conducted on multiple aero-engine rolling bearing datasets, validating the superior noise-resistant diagnostic performance of the method proposed in this paper under complex working conditions, which offers significant advantages compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rick3455完成签到 ,获得积分10
1秒前
开放的亦竹完成签到,获得积分10
1秒前
执念完成签到 ,获得积分10
2秒前
3秒前
耶耶完成签到,获得积分20
4秒前
Doctor完成签到 ,获得积分10
4秒前
拼搏的寒凝完成签到 ,获得积分10
5秒前
大学生完成签到 ,获得积分10
5秒前
林林发布了新的文献求助10
6秒前
Only1完成签到,获得积分10
7秒前
轻松笙完成签到,获得积分10
8秒前
小张同学完成签到 ,获得积分10
11秒前
DChen完成签到 ,获得积分10
12秒前
嘟嘟雯完成签到 ,获得积分10
13秒前
13秒前
情怀应助琬碗采纳,获得30
14秒前
Liangyong_Fu完成签到 ,获得积分10
14秒前
15秒前
Only1发布了新的文献求助10
15秒前
昵称完成签到,获得积分10
15秒前
15秒前
土豆你个西红柿完成签到 ,获得积分10
16秒前
小丸子完成签到,获得积分10
17秒前
Dlan完成签到,获得积分10
17秒前
Aliya完成签到 ,获得积分10
17秒前
dadabad完成签到 ,获得积分10
18秒前
xixiYa_发布了新的文献求助10
19秒前
小蘑菇应助小肥采纳,获得10
19秒前
jjj完成签到 ,获得积分10
20秒前
在水一方应助xuyidan采纳,获得10
20秒前
张zz完成签到 ,获得积分10
20秒前
dly完成签到 ,获得积分10
20秒前
坚强的缘分完成签到,获得积分10
21秒前
Criminology34应助chd采纳,获得10
21秒前
山东老铁完成签到 ,获得积分10
22秒前
沉梦昂志_hzy完成签到,获得积分0
23秒前
25秒前
25秒前
27秒前
乳酸菌小面包完成签到,获得积分10
27秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386