Fault diagnosis method of rolling bearing based on noise reduction enhanced multi-frequency scale network

计算机科学 断层(地质) 方位(导航) 判别式 噪音(视频) 降噪 振动 人工智能 模式识别(心理学) 还原(数学) 特征提取 声学 数学 物理 几何学 地震学 图像(数学) 地质学
作者
Dewen Kong,Hongfei Zhan,Junhe Yu,Rui Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 116014-116014
标识
DOI:10.1088/1361-6501/ad704b
摘要

Abstract Currently, data-driven deep learning methods have attracted much attention in the field of bearing fault diagnosis. Nonetheless, the existing rolling bearing fault methods suffer from insufficient fault feature extraction capability when dealing with variable operating conditions and strong noise environments. Therefore, this paper proposes a noise reduction enhanced multi-frequency scale network model-bidirectional long short-term memory network based on the collected bearing vibration data source. The noise embedded in the original vibration signals under different working conditions is effectively removed by designing an adaptive threshold noise reduction module. To comprehensively explore fault information within the vibration signals, a combined strategy of ordinary convolution and dilated convolution is proposed to cross-extract signal features across high, medium, and low multi-frequency scales. Simultaneously, a self-attention mechanism mode is integrated into the traditional channel attention mechanism to augment the model’s focus on multichannel and internal features, addressing the challenge of incomplete feature extraction under complex working conditions. Furthermore, the output mechanism is optimized and reacquired to grasp the intrinsic links between the combined fault characteristics. This process enhances the model’s discriminative power for early bearing faults and its generalization ability to accommodate data from diverse working conditions, thereby facilitating accurate diagnosis of bearing faults. Comparison and ablation experiments are conducted on multiple aero-engine rolling bearing datasets, validating the superior noise-resistant diagnostic performance of the method proposed in this paper under complex working conditions, which offers significant advantages compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王珏珏完成签到,获得积分10
刚刚
Sui发布了新的文献求助10
1秒前
陈帅发布了新的文献求助10
2秒前
mint完成签到,获得积分10
3秒前
5秒前
吕小布完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
panda完成签到,获得积分10
8秒前
dream完成签到,获得积分10
8秒前
8秒前
田様应助樱偶猫采纳,获得10
8秒前
彩云易散发布了新的文献求助10
8秒前
Albee0907完成签到,获得积分10
9秒前
优雅的鲂完成签到,获得积分10
9秒前
10秒前
狗妹那塞完成签到,获得积分10
10秒前
yuhan完成签到,获得积分10
10秒前
LI完成签到,获得积分10
11秒前
panda发布了新的文献求助10
11秒前
11秒前
Jane发布了新的文献求助20
11秒前
Sui完成签到,获得积分10
11秒前
王美贤发布了新的文献求助10
11秒前
小鞋完成签到,获得积分10
12秒前
15秒前
领导范儿应助伽方之主采纳,获得10
15秒前
PP发布了新的文献求助10
16秒前
猫滩儿发布了新的文献求助10
16秒前
zjh发布了新的文献求助20
17秒前
左彦完成签到,获得积分10
17秒前
GRG完成签到 ,获得积分10
17秒前
JamesPei应助123采纳,获得10
18秒前
裴荣华完成签到,获得积分10
18秒前
18秒前
19秒前
阿十完成签到,获得积分10
19秒前
Martin发布了新的文献求助10
20秒前
王美贤完成签到,获得积分20
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258508
求助须知:如何正确求助?哪些是违规求助? 2900361
关于积分的说明 8309903
捐赠科研通 2569594
什么是DOI,文献DOI怎么找? 1395833
科研通“疑难数据库(出版商)”最低求助积分说明 653314
邀请新用户注册赠送积分活动 631201