An artificial intelligence-enabled electrocardiogram model outperforms the revised cardiac risk index score for predicting major adverse cardiovascular events in patients undergoing noncardiac surgery

医学 不利影响 心脏病学 内科学 索引(排版) 万维网 计算机科学
作者
Mohammad Ali Sheffeh,A Estarda-Magana,José R. Medina‐Inojosa,Katrin Mangold,Konstantinos C. Siontis,P Sher-Lu,Adam K. Jacob,Eduardo N. Chini,Laura Ortega Aviles,Kan Liu,N Noseworthy,Zachi I. Attia,F Lopez-Jiminez
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3484
摘要

Abstract Background Existing clinical preoperative risk assessment tools such as the Revised Cardiac Risk Index (RCRI) have been used extensively to predict perioperative major adverse cardiovascular events (MACE). Electrocardiogram (ECG) analysis using Deep Learning can identify hidden features that human eyes cannot identify and might help further risk stratify patients undergoing noncardiac surgery. Objective We aimed to develop a Deep Learning model that predicts perioperative MACE in patients undergoing elective noncardiac surgeries. Methods We included patients ≥ 18-year-old who underwent elective non-cardiac surgery between 2000-2021. MACE was validated in duplicate and were defined as a composite of in-hospital myocardial infarction, cardiac arrest or mortality. A convolutional neural network was developed using ECGs within 30 days before surgery. We randomly split subjects into training, internal validation, and testing datasets in a 7:1:2 ratio. Performance was evaluated using the area under the receiver operator characteristics curve (AUC) values on the testing dataset. Models trained included AI-ECG models to predict in-hospital MACE and to predict in-hospital mortality, and AI-ECG+RCRI models to predict in-hospital MACE and to predict in-hospital mortality. All models were validated using 30-day validated outcomes (MACE or all-cause mortality) in a community-based cohort and were compared with the Revised Cardiac Risk Index (RCRI) score using AUC values. Findings: We included 195,214 patients who underwent a total of 241,999 surgeries. 169,214 ECGs were used in the training dataset, 24,234 in the internal validation dataset, and 48,551 in the testing dataset. In the test cohort, the AI-ECG algorithm discriminated risk for in-hospital MACE with an AUC of 0.82 (95% CI 0.79-0.85). The algorithm similarly discriminated 30-day MACE with an AUC value of 0.79 (95% CI 0.77-0.81) surpassing the discrimination of the RCRI score AUC of 0.69 (95% CI 0.66-0.72). All models’ performances are shown in Figure1A. The AI-ECG model to predict in-hospital mortality had an AUC of 0.83 (95% CI 0.80-0.86) and predicted 30-day mortality with an AUC of 0.80 (95% CI 0.77-0.82). Other models’ performances are shown Figure1B. Training the AI-ECG models including RCRI data did not improve the AI-ECG models’ performance. Conclusion AI-ECG models with no additional clinical data can improve perioperative risk prediction in non-cardiac surgery, outperforming a conventional and widely used risk stratification tool such as the RCRI.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小智发布了新的文献求助10
1秒前
2秒前
sammie完成签到,获得积分20
3秒前
llllzzh完成签到 ,获得积分10
4秒前
木华发布了新的文献求助10
6秒前
1097完成签到 ,获得积分10
6秒前
灵溪完成签到 ,获得积分10
12秒前
小智完成签到,获得积分10
13秒前
璨澄完成签到 ,获得积分10
14秒前
15秒前
爆米花应助ww采纳,获得10
18秒前
asafasfsaff完成签到 ,获得积分10
20秒前
小马甲应助萨尔莫斯采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
26秒前
JJJ发布了新的文献求助10
27秒前
渔舟唱晚应助JiangShang采纳,获得10
28秒前
Mr.Ren完成签到,获得积分10
28秒前
轩辕远航完成签到 ,获得积分10
29秒前
zhouleibio完成签到,获得积分10
31秒前
渔舟唱晚应助xiaoxiao采纳,获得30
32秒前
ww发布了新的文献求助10
32秒前
anders关注了科研通微信公众号
32秒前
33秒前
愉快的馒头完成签到,获得积分10
35秒前
xulei发布了新的文献求助10
38秒前
肖兔子哇完成签到 ,获得积分10
40秒前
键华发布了新的文献求助10
40秒前
ZhangHuaqing完成签到,获得积分20
41秒前
43秒前
sherry221发布了新的文献求助60
46秒前
xulei完成签到,获得积分10
47秒前
ZhangHuaqing发布了新的文献求助10
47秒前
48秒前
50秒前
nicewink发布了新的文献求助10
54秒前
zqr发布了新的文献求助10
55秒前
anders发布了新的文献求助10
55秒前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371679
求助须知:如何正确求助?哪些是违规求助? 2989769
关于积分的说明 8737179
捐赠科研通 2673092
什么是DOI,文献DOI怎么找? 1464360
科研通“疑难数据库(出版商)”最低求助积分说明 677506
邀请新用户注册赠送积分活动 668824