马拉特1
线粒体
糖尿病性心肌病
生物
下调和上调
基因敲除
小RNA
线粒体DNA
细胞生物学
基因
分子生物学
心肌病
遗传学
长非编码RNA
内科学
医学
心力衰竭
作者
Andrew D. Taylor,Quincy A. Hathaway,Ethan Meadows,Andrya J. Durr,Amina Kunovac,Mark V. Pinti,Christopher C. H. Cook,Beth A. Miller,Remi Nohoesu,Roxy Nicoletti,Hafsat Olateju Alabere,Aaron R. Robart,John M. Hollander
出处
期刊:American Journal of Physiology-heart and Circulatory Physiology
[American Physiological Society]
日期:2024-10-25
标识
DOI:10.1152/ajpheart.00607.2024
摘要
Understanding the cellular mechanisms behind diabetes-related cardiomyopathy is crucial as it is a common and deadly complication of diabetes mellitus. Dysregulation of the mitochondrial genome has been linked to diabetic cardiomyopathy, and can be ameliorated by altering microRNA (miRNA) availability in the mitochondrion. Long non-coding RNAs (lncRNAs) have been identified to downregulate miRNAs. This study aimed to determine if diabetes mellitus impacts the mitochondrial localization of lncRNAs, their interaction with miRNAs, and how this influences mitochondrial and cardiac function. In mouse and human non-diabetic and type 2 diabetic cardiac tissue, RNA was isolated from purified mitochondria and sequenced (Ilumina HiSeq). Malat1 was significantly downregulated in both human and mouse cardiac mitochondria. Use of a mouse model with an insertional deletion of Malat1 transcript expression resulted in exacerbated systolic and diastolic dysfunction when evaluated in conjunction with a high-fat diet. The cardiac effects of a high-fat diet were countered in a mouse model with transgenic overexpression of Malat1. MiR-320a, a miRNA that binds to both mitochondrial genome-encoded gene NADH-ubiquinone oxidoreductase chain 1 (MT-ND1) as well as Malat1, was upregulated in human and mouse diabetic mitochondria. Conversely, MT-ND1 was downregulated in human and mouse diabetic mitochondria. Mice with an insertional inactivation of Malat1 displayed increased recruitment of both miR-320a and MT-ND1 to the RNA-induced silencing complex (RISC). In vitro pulldown assays of Malat1 fragments with conserved secondary structure confirmed binding capacity for miR-320a. In vitro Seahorse assays indicated that Malat1 knockdown and miR-320a overexpression impaired overall mitochondrial bioenergetics and Complex I functionality. In summary, the disruption of Malat1 presence in mitochondria as observed in diabetic cardiomyopathy is linked to cardiac dysfunction and mitochondrial genome regulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI